Metamath Proof Explorer


Definition df-mon1

Description: Define the set of monic univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-mon1 Monic 1p = r V f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f = 1 r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmn1 class Monic 1p
1 vr setvar r
2 cvv class V
3 vf setvar f
4 cbs class Base
5 cpl1 class Poly 1
6 1 cv setvar r
7 6 5 cfv class Poly 1 r
8 7 4 cfv class Base Poly 1 r
9 3 cv setvar f
10 c0g class 0 𝑔
11 7 10 cfv class 0 Poly 1 r
12 9 11 wne wff f 0 Poly 1 r
13 cco1 class coe 1
14 9 13 cfv class coe 1 f
15 cdg1 class deg 1
16 6 15 cfv class deg 1 r
17 9 16 cfv class deg 1 r f
18 17 14 cfv class coe 1 f deg 1 r f
19 cur class 1 r
20 6 19 cfv class 1 r
21 18 20 wceq wff coe 1 f deg 1 r f = 1 r
22 12 21 wa wff f 0 Poly 1 r coe 1 f deg 1 r f = 1 r
23 22 3 8 crab class f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f = 1 r
24 1 2 23 cmpt class r V f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f = 1 r
25 0 24 wceq wff Monic 1p = r V f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f = 1 r