| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uc1pval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | uc1pval.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | uc1pval.z |  |-  .0. = ( 0g ` P ) | 
						
							| 4 |  | uc1pval.d |  |-  D = ( deg1 ` R ) | 
						
							| 5 |  | mon1pval.m |  |-  M = ( Monic1p ` R ) | 
						
							| 6 |  | mon1pval.o |  |-  .1. = ( 1r ` R ) | 
						
							| 7 |  | neeq1 |  |-  ( f = F -> ( f =/= .0. <-> F =/= .0. ) ) | 
						
							| 8 |  | fveq2 |  |-  ( f = F -> ( coe1 ` f ) = ( coe1 ` F ) ) | 
						
							| 9 |  | fveq2 |  |-  ( f = F -> ( D ` f ) = ( D ` F ) ) | 
						
							| 10 | 8 9 | fveq12d |  |-  ( f = F -> ( ( coe1 ` f ) ` ( D ` f ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( f = F -> ( ( ( coe1 ` f ) ` ( D ` f ) ) = .1. <-> ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) ) | 
						
							| 12 | 7 11 | anbi12d |  |-  ( f = F -> ( ( f =/= .0. /\ ( ( coe1 ` f ) ` ( D ` f ) ) = .1. ) <-> ( F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 | mon1pval |  |-  M = { f e. B | ( f =/= .0. /\ ( ( coe1 ` f ) ` ( D ` f ) ) = .1. ) } | 
						
							| 14 | 12 13 | elrab2 |  |-  ( F e. M <-> ( F e. B /\ ( F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) ) ) | 
						
							| 15 |  | 3anass |  |-  ( ( F e. B /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) <-> ( F e. B /\ ( F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) ) ) | 
						
							| 16 | 14 15 | bitr4i |  |-  ( F e. M <-> ( F e. B /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) ) |