Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uc1pcl.p | |- P = ( Poly1 ` R ) |
|
| uc1pcl.b | |- B = ( Base ` P ) |
||
| mon1pcl.m | |- M = ( Monic1p ` R ) |
||
| Assertion | mon1pcl | |- ( F e. M -> F e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pcl.p | |- P = ( Poly1 ` R ) |
|
| 2 | uc1pcl.b | |- B = ( Base ` P ) |
|
| 3 | mon1pcl.m | |- M = ( Monic1p ` R ) |
|
| 4 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 5 | eqid | |- ( deg1 ` R ) = ( deg1 ` R ) |
|
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | 1 2 4 5 3 6 | ismon1p | |- ( F e. M <-> ( F e. B /\ F =/= ( 0g ` P ) /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) = ( 1r ` R ) ) ) |
| 8 | 7 | simp1bi | |- ( F e. M -> F e. B ) |