Description: Unitic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uc1pn0.p | |- P = ( Poly1 ` R ) | |
| uc1pn0.z | |- .0. = ( 0g ` P ) | ||
| uc1pn0.c | |- C = ( Unic1p ` R ) | ||
| Assertion | uc1pn0 | |- ( F e. C -> F =/= .0. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uc1pn0.p | |- P = ( Poly1 ` R ) | |
| 2 | uc1pn0.z | |- .0. = ( 0g ` P ) | |
| 3 | uc1pn0.c | |- C = ( Unic1p ` R ) | |
| 4 | eqid | |- ( Base ` P ) = ( Base ` P ) | |
| 5 | eqid | |- ( deg1 ` R ) = ( deg1 ` R ) | |
| 6 | eqid | |- ( Unit ` R ) = ( Unit ` R ) | |
| 7 | 1 4 2 5 3 6 | isuc1p | |- ( F e. C <-> ( F e. ( Base ` P ) /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Unit ` R ) ) ) | 
| 8 | 7 | simp2bi | |- ( F e. C -> F =/= .0. ) |