| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uc1pval.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
uc1pval.b |
|- B = ( Base ` P ) |
| 3 |
|
uc1pval.z |
|- .0. = ( 0g ` P ) |
| 4 |
|
uc1pval.d |
|- D = ( deg1 ` R ) |
| 5 |
|
uc1pval.c |
|- C = ( Unic1p ` R ) |
| 6 |
|
uc1pval.u |
|- U = ( Unit ` R ) |
| 7 |
|
neeq1 |
|- ( f = F -> ( f =/= .0. <-> F =/= .0. ) ) |
| 8 |
|
fveq2 |
|- ( f = F -> ( coe1 ` f ) = ( coe1 ` F ) ) |
| 9 |
|
fveq2 |
|- ( f = F -> ( D ` f ) = ( D ` F ) ) |
| 10 |
8 9
|
fveq12d |
|- ( f = F -> ( ( coe1 ` f ) ` ( D ` f ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) |
| 11 |
10
|
eleq1d |
|- ( f = F -> ( ( ( coe1 ` f ) ` ( D ` f ) ) e. U <-> ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) ) |
| 12 |
7 11
|
anbi12d |
|- ( f = F -> ( ( f =/= .0. /\ ( ( coe1 ` f ) ` ( D ` f ) ) e. U ) <-> ( F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) ) ) |
| 13 |
1 2 3 4 5 6
|
uc1pval |
|- C = { f e. B | ( f =/= .0. /\ ( ( coe1 ` f ) ` ( D ` f ) ) e. U ) } |
| 14 |
12 13
|
elrab2 |
|- ( F e. C <-> ( F e. B /\ ( F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) ) ) |
| 15 |
|
3anass |
|- ( ( F e. B /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) <-> ( F e. B /\ ( F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) ) ) |
| 16 |
14 15
|
bitr4i |
|- ( F e. C <-> ( F e. B /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) ) |