| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uc1pval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | uc1pval.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | uc1pval.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
						
							| 4 |  | uc1pval.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 5 |  | uc1pval.c | ⊢ 𝐶  =  ( Unic1p ‘ 𝑅 ) | 
						
							| 6 |  | uc1pval.u | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 7 |  | neeq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ≠   0   ↔  𝐹  ≠   0  ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( coe1 ‘ 𝑓 )  =  ( coe1 ‘ 𝐹 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 ) ) | 
						
							| 10 | 8 9 | fveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( coe1 ‘ 𝑓 ) ‘ ( 𝐷 ‘ 𝑓 ) )  =  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( coe1 ‘ 𝑓 ) ‘ ( 𝐷 ‘ 𝑓 ) )  ∈  𝑈  ↔  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝑈 ) ) | 
						
							| 12 | 7 11 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓  ≠   0   ∧  ( ( coe1 ‘ 𝑓 ) ‘ ( 𝐷 ‘ 𝑓 ) )  ∈  𝑈 )  ↔  ( 𝐹  ≠   0   ∧  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝑈 ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 | uc1pval | ⊢ 𝐶  =  { 𝑓  ∈  𝐵  ∣  ( 𝑓  ≠   0   ∧  ( ( coe1 ‘ 𝑓 ) ‘ ( 𝐷 ‘ 𝑓 ) )  ∈  𝑈 ) } | 
						
							| 14 | 12 13 | elrab2 | ⊢ ( 𝐹  ∈  𝐶  ↔  ( 𝐹  ∈  𝐵  ∧  ( 𝐹  ≠   0   ∧  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝑈 ) ) ) | 
						
							| 15 |  | 3anass | ⊢ ( ( 𝐹  ∈  𝐵  ∧  𝐹  ≠   0   ∧  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝑈 )  ↔  ( 𝐹  ∈  𝐵  ∧  ( 𝐹  ≠   0   ∧  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝑈 ) ) ) | 
						
							| 16 | 14 15 | bitr4i | ⊢ ( 𝐹  ∈  𝐶  ↔  ( 𝐹  ∈  𝐵  ∧  𝐹  ≠   0   ∧  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝑈 ) ) |