Metamath Proof Explorer


Theorem isuc1p

Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pval.p P=Poly1R
uc1pval.b B=BaseP
uc1pval.z 0˙=0P
uc1pval.d D=deg1R
uc1pval.c C=Unic1pR
uc1pval.u U=UnitR
Assertion isuc1p FCFBF0˙coe1FDFU

Proof

Step Hyp Ref Expression
1 uc1pval.p P=Poly1R
2 uc1pval.b B=BaseP
3 uc1pval.z 0˙=0P
4 uc1pval.d D=deg1R
5 uc1pval.c C=Unic1pR
6 uc1pval.u U=UnitR
7 neeq1 f=Ff0˙F0˙
8 fveq2 f=Fcoe1f=coe1F
9 fveq2 f=FDf=DF
10 8 9 fveq12d f=Fcoe1fDf=coe1FDF
11 10 eleq1d f=Fcoe1fDfUcoe1FDFU
12 7 11 anbi12d f=Ff0˙coe1fDfUF0˙coe1FDFU
13 1 2 3 4 5 6 uc1pval C=fB|f0˙coe1fDfU
14 12 13 elrab2 FCFBF0˙coe1FDFU
15 3anass FBF0˙coe1FDFUFBF0˙coe1FDFU
16 14 15 bitr4i FCFBF0˙coe1FDFU