Metamath Proof Explorer


Theorem isuc1p

Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pval.p P = Poly 1 R
uc1pval.b B = Base P
uc1pval.z 0 ˙ = 0 P
uc1pval.d D = deg 1 R
uc1pval.c C = Unic 1p R
uc1pval.u U = Unit R
Assertion isuc1p F C F B F 0 ˙ coe 1 F D F U

Proof

Step Hyp Ref Expression
1 uc1pval.p P = Poly 1 R
2 uc1pval.b B = Base P
3 uc1pval.z 0 ˙ = 0 P
4 uc1pval.d D = deg 1 R
5 uc1pval.c C = Unic 1p R
6 uc1pval.u U = Unit R
7 neeq1 f = F f 0 ˙ F 0 ˙
8 fveq2 f = F coe 1 f = coe 1 F
9 fveq2 f = F D f = D F
10 8 9 fveq12d f = F coe 1 f D f = coe 1 F D F
11 10 eleq1d f = F coe 1 f D f U coe 1 F D F U
12 7 11 anbi12d f = F f 0 ˙ coe 1 f D f U F 0 ˙ coe 1 F D F U
13 1 2 3 4 5 6 uc1pval C = f B | f 0 ˙ coe 1 f D f U
14 12 13 elrab2 F C F B F 0 ˙ coe 1 F D F U
15 3anass F B F 0 ˙ coe 1 F D F U F B F 0 ˙ coe 1 F D F U
16 14 15 bitr4i F C F B F 0 ˙ coe 1 F D F U