Description: Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uc1pn0.p | |- P = ( Poly1 ` R ) |
|
| uc1pn0.z | |- .0. = ( 0g ` P ) |
||
| mon1pn0.m | |- M = ( Monic1p ` R ) |
||
| Assertion | mon1pn0 | |- ( F e. M -> F =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pn0.p | |- P = ( Poly1 ` R ) |
|
| 2 | uc1pn0.z | |- .0. = ( 0g ` P ) |
|
| 3 | mon1pn0.m | |- M = ( Monic1p ` R ) |
|
| 4 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 5 | eqid | |- ( deg1 ` R ) = ( deg1 ` R ) |
|
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | 1 4 2 5 3 6 | ismon1p | |- ( F e. M <-> ( F e. ( Base ` P ) /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) = ( 1r ` R ) ) ) |
| 8 | 7 | simp2bi | |- ( F e. M -> F =/= .0. ) |