Description: Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uc1pn0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| uc1pn0.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| mon1pn0.m | ⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) | ||
| Assertion | mon1pn0 | ⊢ ( 𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pn0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | uc1pn0.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 3 | mon1pn0.m | ⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 5 | eqid | ⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 7 | 1 4 2 5 3 6 | ismon1p | ⊢ ( 𝐹 ∈ 𝑀 ↔ ( 𝐹 ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ≠ 0 ∧ ( ( coe1 ‘ 𝐹 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝐹 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 8 | 7 | simp2bi | ⊢ ( 𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) |