Metamath Proof Explorer


Theorem mon1pn0

Description: Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pn0.p P=Poly1R
uc1pn0.z 0˙=0P
mon1pn0.m M=Monic1pR
Assertion mon1pn0 FMF0˙

Proof

Step Hyp Ref Expression
1 uc1pn0.p P=Poly1R
2 uc1pn0.z 0˙=0P
3 mon1pn0.m M=Monic1pR
4 eqid BaseP=BaseP
5 eqid deg1R=deg1R
6 eqid 1R=1R
7 1 4 2 5 3 6 ismon1p FMFBasePF0˙coe1Fdeg1RF=1R
8 7 simp2bi FMF0˙