| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mon1psubm.p |
|
| 2 |
|
mon1psubm.m |
|
| 3 |
|
mon1psubm.u |
|
| 4 |
|
eqid |
|
| 5 |
1 4 2
|
mon1pcl |
|
| 6 |
5
|
ssriv |
|
| 7 |
6
|
a1i |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
1 8 2 9
|
mon1pid |
|
| 11 |
10
|
simpld |
|
| 12 |
1
|
ply1nz |
|
| 13 |
|
nzrring |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
5
|
ad2antrl |
|
| 17 |
|
simprr |
|
| 18 |
6 17
|
sselid |
|
| 19 |
|
eqid |
|
| 20 |
4 19
|
ringcl |
|
| 21 |
15 16 18 20
|
syl3anc |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
nzrring |
|
| 25 |
24
|
adantr |
|
| 26 |
1 23 2
|
mon1pn0 |
|
| 27 |
26
|
ad2antrl |
|
| 28 |
|
eqid |
|
| 29 |
9 28 2
|
mon1pldg |
|
| 30 |
29
|
ad2antrl |
|
| 31 |
|
eqid |
|
| 32 |
22 31
|
unitrrg |
|
| 33 |
24 32
|
syl |
|
| 34 |
31 28
|
1unit |
|
| 35 |
24 34
|
syl |
|
| 36 |
33 35
|
sseldd |
|
| 37 |
36
|
adantr |
|
| 38 |
30 37
|
eqeltrd |
|
| 39 |
1 23 2
|
mon1pn0 |
|
| 40 |
39
|
ad2antll |
|
| 41 |
9 1 22 4 19 23 25 16 27 38 18 40
|
deg1mul2 |
|
| 42 |
9 1 23 4
|
deg1nn0cl |
|
| 43 |
25 16 27 42
|
syl3anc |
|
| 44 |
9 1 23 4
|
deg1nn0cl |
|
| 45 |
25 18 40 44
|
syl3anc |
|
| 46 |
43 45
|
nn0addcld |
|
| 47 |
41 46
|
eqeltrd |
|
| 48 |
9 1 23 4
|
deg1nn0clb |
|
| 49 |
25 21 48
|
syl2anc |
|
| 50 |
47 49
|
mpbird |
|
| 51 |
41
|
fveq2d |
|
| 52 |
|
eqid |
|
| 53 |
1 19 52 4 9 23 25 16 27 18 40
|
coe1mul4 |
|
| 54 |
9 28 2
|
mon1pldg |
|
| 55 |
54
|
ad2antll |
|
| 56 |
30 55
|
oveq12d |
|
| 57 |
|
eqid |
|
| 58 |
57 28
|
ringidcl |
|
| 59 |
57 52 28
|
ringlidm |
|
| 60 |
24 58 59
|
syl2anc2 |
|
| 61 |
60
|
adantr |
|
| 62 |
56 61
|
eqtrd |
|
| 63 |
53 62
|
eqtrd |
|
| 64 |
51 63
|
eqtrd |
|
| 65 |
1 4 23 9 2 28
|
ismon1p |
|
| 66 |
21 50 64 65
|
syl3anbrc |
|
| 67 |
66
|
ralrimivva |
|
| 68 |
3
|
ringmgp |
|
| 69 |
14 68
|
syl |
|
| 70 |
3 4
|
mgpbas |
|
| 71 |
3 8
|
ringidval |
|
| 72 |
3 19
|
mgpplusg |
|
| 73 |
70 71 72
|
issubm |
|
| 74 |
69 73
|
syl |
|
| 75 |
7 11 67 74
|
mpbir3and |
|