Step |
Hyp |
Ref |
Expression |
1 |
|
mon1psubm.p |
|
2 |
|
mon1psubm.m |
|
3 |
|
mon1psubm.u |
|
4 |
|
eqid |
|
5 |
1 4 2
|
mon1pcl |
|
6 |
5
|
ssriv |
|
7 |
6
|
a1i |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1 8 2 9
|
mon1pid |
|
11 |
10
|
simpld |
|
12 |
1
|
ply1nz |
|
13 |
|
nzrring |
|
14 |
12 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
5
|
ad2antrl |
|
17 |
|
simprr |
|
18 |
6 17
|
sselid |
|
19 |
|
eqid |
|
20 |
4 19
|
ringcl |
|
21 |
15 16 18 20
|
syl3anc |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
nzrring |
|
25 |
24
|
adantr |
|
26 |
1 23 2
|
mon1pn0 |
|
27 |
26
|
ad2antrl |
|
28 |
|
eqid |
|
29 |
9 28 2
|
mon1pldg |
|
30 |
29
|
ad2antrl |
|
31 |
|
eqid |
|
32 |
22 31
|
unitrrg |
|
33 |
24 32
|
syl |
|
34 |
31 28
|
1unit |
|
35 |
24 34
|
syl |
|
36 |
33 35
|
sseldd |
|
37 |
36
|
adantr |
|
38 |
30 37
|
eqeltrd |
|
39 |
1 23 2
|
mon1pn0 |
|
40 |
39
|
ad2antll |
|
41 |
9 1 22 4 19 23 25 16 27 38 18 40
|
deg1mul2 |
|
42 |
9 1 23 4
|
deg1nn0cl |
|
43 |
25 16 27 42
|
syl3anc |
|
44 |
9 1 23 4
|
deg1nn0cl |
|
45 |
25 18 40 44
|
syl3anc |
|
46 |
43 45
|
nn0addcld |
|
47 |
41 46
|
eqeltrd |
|
48 |
9 1 23 4
|
deg1nn0clb |
|
49 |
25 21 48
|
syl2anc |
|
50 |
47 49
|
mpbird |
|
51 |
41
|
fveq2d |
|
52 |
|
eqid |
|
53 |
1 19 52 4 9 23 25 16 27 18 40
|
coe1mul4 |
|
54 |
9 28 2
|
mon1pldg |
|
55 |
54
|
ad2antll |
|
56 |
30 55
|
oveq12d |
|
57 |
|
eqid |
|
58 |
57 28
|
ringidcl |
|
59 |
57 52 28
|
ringlidm |
|
60 |
24 58 59
|
syl2anc2 |
|
61 |
60
|
adantr |
|
62 |
56 61
|
eqtrd |
|
63 |
53 62
|
eqtrd |
|
64 |
51 63
|
eqtrd |
|
65 |
1 4 23 9 2 28
|
ismon1p |
|
66 |
21 50 64 65
|
syl3anbrc |
|
67 |
66
|
ralrimivva |
|
68 |
3
|
ringmgp |
|
69 |
14 68
|
syl |
|
70 |
3 4
|
mgpbas |
|
71 |
3 8
|
ringidval |
|
72 |
3 19
|
mgpplusg |
|
73 |
70 71 72
|
issubm |
|
74 |
69 73
|
syl |
|
75 |
7 11 67 74
|
mpbir3and |
|