Metamath Proof Explorer


Theorem domnrrg

Description: In a domain, any nonzero element is a nonzero-divisor. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Hypotheses isdomn2.b
|- B = ( Base ` R )
isdomn2.t
|- E = ( RLReg ` R )
isdomn2.z
|- .0. = ( 0g ` R )
Assertion domnrrg
|- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. E )

Proof

Step Hyp Ref Expression
1 isdomn2.b
 |-  B = ( Base ` R )
2 isdomn2.t
 |-  E = ( RLReg ` R )
3 isdomn2.z
 |-  .0. = ( 0g ` R )
4 1 2 3 isdomn2
 |-  ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) )
5 4 simprbi
 |-  ( R e. Domn -> ( B \ { .0. } ) C_ E )
6 5 3ad2ant1
 |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> ( B \ { .0. } ) C_ E )
7 simp2
 |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. B )
8 simp3
 |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X =/= .0. )
9 eldifsn
 |-  ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) )
10 7 8 9 sylanbrc
 |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. ( B \ { .0. } ) )
11 6 10 sseldd
 |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. E )