| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdomn6.b |
|- B = ( Base ` R ) |
| 2 |
|
isdomn6.t |
|- E = ( RLReg ` R ) |
| 3 |
|
isdomn6.z |
|- .0. = ( 0g ` R ) |
| 4 |
1 2 3
|
isdomn2 |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| 5 |
2 1
|
rrgss |
|- E C_ B |
| 6 |
5
|
a1i |
|- ( R e. NzRing -> E C_ B ) |
| 7 |
2 3
|
rrgnz |
|- ( R e. NzRing -> -. .0. e. E ) |
| 8 |
|
ssdifsn |
|- ( E C_ ( B \ { .0. } ) <-> ( E C_ B /\ -. .0. e. E ) ) |
| 9 |
6 7 8
|
sylanbrc |
|- ( R e. NzRing -> E C_ ( B \ { .0. } ) ) |
| 10 |
|
sssseq |
|- ( E C_ ( B \ { .0. } ) -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) |
| 11 |
9 10
|
syl |
|- ( R e. NzRing -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) |
| 12 |
11
|
pm5.32i |
|- ( ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |
| 13 |
4 12
|
bitri |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |