| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdomn2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isdomn2.t |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
| 3 |
|
isdomn2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
1 2 3
|
isdomn2 |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝑅 ∈ Domn → ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
| 7 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵 ) |
| 8 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
| 9 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) |
| 10 |
7 8 9
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 11 |
6 10
|
sseldd |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸 ) |