Metamath Proof Explorer


Theorem add20

Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion add20 A0AB0BA+B=0A=0B=0

Proof

Step Hyp Ref Expression
1 simpllr A0AB0BA+B=00A
2 simplrl A0AB0BA+B=0B
3 simplll A0AB0BA+B=0A
4 addge02 BA0ABA+B
5 2 3 4 syl2anc A0AB0BA+B=00ABA+B
6 1 5 mpbid A0AB0BA+B=0BA+B
7 simpr A0AB0BA+B=0A+B=0
8 6 7 breqtrd A0AB0BA+B=0B0
9 simplrr A0AB0BA+B=00B
10 0red A0AB0BA+B=00
11 2 10 letri3d A0AB0BA+B=0B=0B00B
12 8 9 11 mpbir2and A0AB0BA+B=0B=0
13 12 oveq2d A0AB0BA+B=0A+B=A+0
14 3 recnd A0AB0BA+B=0A
15 14 addridd A0AB0BA+B=0A+0=A
16 13 7 15 3eqtr3rd A0AB0BA+B=0A=0
17 16 12 jca A0AB0BA+B=0A=0B=0
18 17 ex A0AB0BA+B=0A=0B=0
19 oveq12 A=0B=0A+B=0+0
20 00id 0+0=0
21 19 20 eqtrdi A=0B=0A+B=0
22 18 21 impbid1 A0AB0BA+B=0A=0B=0