Metamath Proof Explorer


Theorem deg1ldg

Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
deg1nn0cl.b B = Base P
deg1ldg.y Y = 0 R
deg1ldg.a A = coe 1 F
Assertion deg1ldg R Ring F B F 0 ˙ A D F Y

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 deg1nn0cl.b B = Base P
5 deg1ldg.y Y = 0 R
6 deg1ldg.a A = coe 1 F
7 1 deg1fval D = 1 𝑜 mDeg R
8 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
9 eqid PwSer 1 R = PwSer 1 R
10 2 9 4 ply1bas B = Base 1 𝑜 mPoly R
11 psr1baslem 0 1 𝑜 = c 0 1 𝑜 | c -1 Fin
12 tdeglem2 a 0 1 𝑜 a = a 0 1 𝑜 fld a
13 8 2 3 ply1mpl0 0 ˙ = 0 1 𝑜 mPoly R
14 7 8 10 5 11 12 13 mdegldg R Ring F B F 0 ˙ b 0 1 𝑜 F b Y a 0 1 𝑜 a b = D F
15 6 fvcoe1 F B b 0 1 𝑜 F b = A b
16 15 3ad2antl2 R Ring F B F 0 ˙ b 0 1 𝑜 F b = A b
17 fveq1 a = b a = b
18 eqid a 0 1 𝑜 a = a 0 1 𝑜 a
19 fvex b V
20 17 18 19 fvmpt b 0 1 𝑜 a 0 1 𝑜 a b = b
21 20 fveq2d b 0 1 𝑜 A a 0 1 𝑜 a b = A b
22 21 adantl R Ring F B F 0 ˙ b 0 1 𝑜 A a 0 1 𝑜 a b = A b
23 16 22 eqtr4d R Ring F B F 0 ˙ b 0 1 𝑜 F b = A a 0 1 𝑜 a b
24 23 neeq1d R Ring F B F 0 ˙ b 0 1 𝑜 F b Y A a 0 1 𝑜 a b Y
25 24 anbi1d R Ring F B F 0 ˙ b 0 1 𝑜 F b Y a 0 1 𝑜 a b = D F A a 0 1 𝑜 a b Y a 0 1 𝑜 a b = D F
26 25 biancomd R Ring F B F 0 ˙ b 0 1 𝑜 F b Y a 0 1 𝑜 a b = D F a 0 1 𝑜 a b = D F A a 0 1 𝑜 a b Y
27 26 rexbidva R Ring F B F 0 ˙ b 0 1 𝑜 F b Y a 0 1 𝑜 a b = D F b 0 1 𝑜 a 0 1 𝑜 a b = D F A a 0 1 𝑜 a b Y
28 df1o2 1 𝑜 =
29 nn0ex 0 V
30 0ex V
31 28 29 30 18 mapsnf1o2 a 0 1 𝑜 a : 0 1 𝑜 1-1 onto 0
32 f1ofo a 0 1 𝑜 a : 0 1 𝑜 1-1 onto 0 a 0 1 𝑜 a : 0 1 𝑜 onto 0
33 eqeq1 a 0 1 𝑜 a b = d a 0 1 𝑜 a b = D F d = D F
34 fveq2 a 0 1 𝑜 a b = d A a 0 1 𝑜 a b = A d
35 34 neeq1d a 0 1 𝑜 a b = d A a 0 1 𝑜 a b Y A d Y
36 33 35 anbi12d a 0 1 𝑜 a b = d a 0 1 𝑜 a b = D F A a 0 1 𝑜 a b Y d = D F A d Y
37 36 cbvexfo a 0 1 𝑜 a : 0 1 𝑜 onto 0 b 0 1 𝑜 a 0 1 𝑜 a b = D F A a 0 1 𝑜 a b Y d 0 d = D F A d Y
38 31 32 37 mp2b b 0 1 𝑜 a 0 1 𝑜 a b = D F A a 0 1 𝑜 a b Y d 0 d = D F A d Y
39 27 38 syl6bb R Ring F B F 0 ˙ b 0 1 𝑜 F b Y a 0 1 𝑜 a b = D F d 0 d = D F A d Y
40 1 2 3 4 deg1nn0cl R Ring F B F 0 ˙ D F 0
41 fveq2 d = D F A d = A D F
42 41 neeq1d d = D F A d Y A D F Y
43 42 ceqsrexv D F 0 d 0 d = D F A d Y A D F Y
44 40 43 syl R Ring F B F 0 ˙ d 0 d = D F A d Y A D F Y
45 39 44 bitrd R Ring F B F 0 ˙ b 0 1 𝑜 F b Y a 0 1 𝑜 a b = D F A D F Y
46 14 45 mpbid R Ring F B F 0 ˙ A D F Y