Metamath Proof Explorer


Theorem fldidom

Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Assertion fldidom R Field R IDomn

Proof

Step Hyp Ref Expression
1 drngdomn R DivRing R Domn
2 1 anim1ci R DivRing R CRing R CRing R Domn
3 isfld R Field R DivRing R CRing
4 isidom R IDomn R CRing R Domn
5 2 3 4 3imtr4i R Field R IDomn