Metamath Proof Explorer


Theorem fldidom

Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Assertion fldidom RFieldRIDomn

Proof

Step Hyp Ref Expression
1 drngdomn RDivRingRDomn
2 1 anim1ci RDivRingRCRingRCRingRDomn
3 isfld RFieldRDivRingRCRing
4 isidom RIDomnRCRingRDomn
5 2 3 4 3imtr4i RFieldRIDomn