Metamath Proof Explorer


Theorem fldidomOLD

Description: Obsolete version of fldidom as of 11-Nov-2024. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fldidomOLD R Field R IDomn

Proof

Step Hyp Ref Expression
1 isfld R Field R DivRing R CRing
2 1 simprbi R Field R CRing
3 1 simplbi R Field R DivRing
4 drngdomn R DivRing R Domn
5 3 4 syl R Field R Domn
6 isidom R IDomn R CRing R Domn
7 2 5 6 sylanbrc R Field R IDomn