Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof shortened by SN, 11-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | fldidom | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
2 | 1 | anim1ci | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
3 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
4 | isidom | ⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) | |
5 | 2 3 4 | 3imtr4i | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) |