Metamath Proof Explorer


Theorem fldidom

Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Assertion fldidom ( 𝑅 ∈ Field → 𝑅 ∈ IDomn )

Proof

Step Hyp Ref Expression
1 drngdomn ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn )
2 1 anim1ci ( ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )
3 isfld ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) )
4 isidom ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )
5 2 3 4 3imtr4i ( 𝑅 ∈ Field → 𝑅 ∈ IDomn )