Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof shortened by SN, 11-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | fldidom | |- ( R e. Field -> R e. IDomn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
2 | 1 | anim1ci | |- ( ( R e. DivRing /\ R e. CRing ) -> ( R e. CRing /\ R e. Domn ) ) |
3 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
|
4 | isidom | |- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
|
5 | 2 3 4 | 3imtr4i | |- ( R e. Field -> R e. IDomn ) |