Step |
Hyp |
Ref |
Expression |
1 |
|
ply1dg3rt0irred.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
2 |
|
ply1dg3rt0irred.o |
⊢ 𝑂 = ( eval1 ‘ 𝐹 ) |
3 |
|
ply1dg3rt0irred.d |
⊢ 𝐷 = ( deg1 ‘ 𝐹 ) |
4 |
|
ply1dg3rt0irred.p |
⊢ 𝑃 = ( Poly1 ‘ 𝐹 ) |
5 |
|
ply1dg3rt0irred.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
6 |
|
ply1dg3rt0irred.f |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
7 |
|
ply1dg3rt0irred.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
8 |
|
ply1dg3rt0irred.1 |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝑄 ) “ { 0 } ) = ∅ ) |
9 |
|
ply1dg3rt0irred.2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑄 ) = 3 ) |
10 |
|
3ne0 |
⊢ 3 ≠ 0 |
11 |
10
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
12 |
9 11
|
eqnetrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑄 ) ≠ 0 ) |
13 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
15 |
7 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑃 ) ) |
16 |
4 13 14 1 6 3 15
|
ply1unit |
⊢ ( 𝜑 → ( 𝑄 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝑄 ) = 0 ) ) |
17 |
16
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 𝑄 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝑄 ) ≠ 0 ) ) |
18 |
12 17
|
mpbird |
⊢ ( 𝜑 → ¬ 𝑄 ∈ ( Unit ‘ 𝑃 ) ) |
19 |
7 18
|
eldifd |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) |
20 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ Field ) |
21 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) |
22 |
21
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ∈ 𝐵 ) |
23 |
22 5
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ∈ ( Base ‘ 𝑃 ) ) |
24 |
4 13 14 1 20 3 23
|
ply1unit |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝑝 ) = 0 ) ) |
25 |
24
|
biimpar |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 0 ) → 𝑝 ∈ ( Unit ‘ 𝑃 ) ) |
26 |
21
|
eldifbd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ¬ 𝑝 ∈ ( Unit ‘ 𝑃 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 0 ) → ¬ 𝑝 ∈ ( Unit ‘ 𝑃 ) ) |
28 |
25 27
|
pm2.21fal |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 0 ) → ⊥ ) |
29 |
28
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } ) ∧ ( 𝐷 ‘ 𝑝 ) = 0 ) → ⊥ ) |
30 |
6
|
fldcrngd |
⊢ ( 𝜑 → 𝐹 ∈ CRing ) |
31 |
30
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ CRing ) |
32 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) |
33 |
32
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ∈ 𝐵 ) |
34 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
35 |
4 5 2 3 1 31 22 33 34
|
ply1mulrtss |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ⊆ ( ◡ ( 𝑂 ‘ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) “ { 0 } ) ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) |
37 |
36
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑂 ‘ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) = ( 𝑂 ‘ 𝑄 ) ) |
38 |
37
|
cnveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ◡ ( 𝑂 ‘ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) = ◡ ( 𝑂 ‘ 𝑄 ) ) |
39 |
38
|
imaeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) “ { 0 } ) = ( ◡ ( 𝑂 ‘ 𝑄 ) “ { 0 } ) ) |
40 |
35 39
|
sseqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ⊆ ( ◡ ( 𝑂 ‘ 𝑄 ) “ { 0 } ) ) |
41 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑄 ) “ { 0 } ) = ∅ ) |
42 |
40 41
|
sseqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ⊆ ∅ ) |
43 |
|
ss0 |
⊢ ( ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ⊆ ∅ → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) = ∅ ) |
44 |
42 43
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) = ∅ ) |
45 |
44
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) = ∅ ) |
46 |
20
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → 𝐹 ∈ Field ) |
47 |
22
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → 𝑝 ∈ 𝐵 ) |
48 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → ( 𝐷 ‘ 𝑝 ) = 1 ) |
49 |
4 5 2 3 1 46 47 48
|
ply1dg1rtn0 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ≠ ∅ ) |
50 |
45 49
|
pm2.21ddne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → ⊥ ) |
51 |
50
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } ) ∧ ( 𝐷 ‘ 𝑝 ) = 1 ) → ⊥ ) |
52 |
|
elpri |
⊢ ( ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } → ( ( 𝐷 ‘ 𝑝 ) = 0 ∨ ( 𝐷 ‘ 𝑝 ) = 1 ) ) |
53 |
52
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } ) → ( ( 𝐷 ‘ 𝑝 ) = 0 ∨ ( 𝐷 ‘ 𝑝 ) = 1 ) ) |
54 |
29 51 53
|
mpjaodan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } ) → ⊥ ) |
55 |
4 5 2 3 1 31 33 22 34
|
ply1mulrtss |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) ⊆ ( ◡ ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) ) “ { 0 } ) ) |
56 |
|
fldidom |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ IDomn ) |
57 |
6 56
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ IDomn ) |
58 |
4
|
ply1idom |
⊢ ( 𝐹 ∈ IDomn → 𝑃 ∈ IDomn ) |
59 |
57 58
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ IDomn ) |
60 |
59
|
idomcringd |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
61 |
60
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑃 ∈ CRing ) |
62 |
5 34 61 33 22
|
crngcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) = ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) |
63 |
62 36
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) = 𝑄 ) |
64 |
63
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) ) = ( 𝑂 ‘ 𝑄 ) ) |
65 |
64
|
cnveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ◡ ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) ) = ◡ ( 𝑂 ‘ 𝑄 ) ) |
66 |
65
|
imaeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) ) “ { 0 } ) = ( ◡ ( 𝑂 ‘ 𝑄 ) “ { 0 } ) ) |
67 |
66 41
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑝 ) ) “ { 0 } ) = ∅ ) |
68 |
55 67
|
sseqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) ⊆ ∅ ) |
69 |
|
ss0 |
⊢ ( ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) ⊆ ∅ → ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) = ∅ ) |
70 |
68 69
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) = ∅ ) |
71 |
70
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) = ∅ ) |
72 |
20
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → 𝐹 ∈ Field ) |
73 |
33
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → 𝑞 ∈ 𝐵 ) |
74 |
30
|
crngringd |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
75 |
74
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ Ring ) |
76 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
77 |
59
|
idomdomd |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
78 |
77
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑃 ∈ Domn ) |
79 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
80 |
9 79
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑄 ) ∈ ℕ0 ) |
81 |
3 4 76 5
|
deg1nn0clb |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑄 ∈ 𝐵 ) → ( 𝑄 ≠ ( 0g ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝑄 ) ∈ ℕ0 ) ) |
82 |
81
|
biimpar |
⊢ ( ( ( 𝐹 ∈ Ring ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑄 ) ∈ ℕ0 ) → 𝑄 ≠ ( 0g ‘ 𝑃 ) ) |
83 |
74 7 80 82
|
syl21anc |
⊢ ( 𝜑 → 𝑄 ≠ ( 0g ‘ 𝑃 ) ) |
84 |
83
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑄 ≠ ( 0g ‘ 𝑃 ) ) |
85 |
36 84
|
eqnetrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ≠ ( 0g ‘ 𝑃 ) ) |
86 |
5 34 76 78 22 33 85
|
domnmuln0rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑞 ≠ ( 0g ‘ 𝑃 ) ) ) |
87 |
86
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ≠ ( 0g ‘ 𝑃 ) ) |
88 |
3 4 76 5
|
deg1nn0cl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝑝 ) ∈ ℕ0 ) |
89 |
75 22 87 88
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ∈ ℕ0 ) |
90 |
89
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ∈ ℂ ) |
91 |
86
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ≠ ( 0g ‘ 𝑃 ) ) |
92 |
3 4 76 5
|
deg1nn0cl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑞 ∈ 𝐵 ∧ 𝑞 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝑞 ) ∈ ℕ0 ) |
93 |
75 33 91 92
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑞 ) ∈ ℕ0 ) |
94 |
93
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑞 ) ∈ ℂ ) |
95 |
36
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) = ( 𝐷 ‘ 𝑄 ) ) |
96 |
57
|
idomdomd |
⊢ ( 𝜑 → 𝐹 ∈ Domn ) |
97 |
96
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ Domn ) |
98 |
3 4 5 34 76 97 22 87 33 91
|
deg1mul |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ) = ( ( 𝐷 ‘ 𝑝 ) + ( 𝐷 ‘ 𝑞 ) ) ) |
99 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑄 ) = 3 ) |
100 |
95 98 99
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝐷 ‘ 𝑝 ) + ( 𝐷 ‘ 𝑞 ) ) = 3 ) |
101 |
90 94 100
|
mvlladdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑞 ) = ( 3 − ( 𝐷 ‘ 𝑝 ) ) ) |
102 |
101
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( 𝐷 ‘ 𝑞 ) = ( 3 − ( 𝐷 ‘ 𝑝 ) ) ) |
103 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( 𝐷 ‘ 𝑝 ) = 2 ) |
104 |
103
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( 3 − ( 𝐷 ‘ 𝑝 ) ) = ( 3 − 2 ) ) |
105 |
|
3cn |
⊢ 3 ∈ ℂ |
106 |
|
2cn |
⊢ 2 ∈ ℂ |
107 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
108 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
109 |
105 106 107 108
|
subaddrii |
⊢ ( 3 − 2 ) = 1 |
110 |
109
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( 3 − 2 ) = 1 ) |
111 |
102 104 110
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( 𝐷 ‘ 𝑞 ) = 1 ) |
112 |
4 5 2 3 1 72 73 111
|
ply1dg1rtn0 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ( ◡ ( 𝑂 ‘ 𝑞 ) “ { 0 } ) ≠ ∅ ) |
113 |
71 112
|
pm2.21ddne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ⊥ ) |
114 |
113
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } ) ∧ ( 𝐷 ‘ 𝑝 ) = 2 ) → ⊥ ) |
115 |
101
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ( 𝐷 ‘ 𝑞 ) = ( 3 − ( 𝐷 ‘ 𝑝 ) ) ) |
116 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ( 𝐷 ‘ 𝑝 ) = 3 ) |
117 |
116
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ( 3 − ( 𝐷 ‘ 𝑝 ) ) = ( 3 − 3 ) ) |
118 |
105
|
subidi |
⊢ ( 3 − 3 ) = 0 |
119 |
118
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ( 3 − 3 ) = 0 ) |
120 |
115 117 119
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ( 𝐷 ‘ 𝑞 ) = 0 ) |
121 |
20
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → 𝐹 ∈ Field ) |
122 |
33 5
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ∈ ( Base ‘ 𝑃 ) ) |
123 |
122
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → 𝑞 ∈ ( Base ‘ 𝑃 ) ) |
124 |
4 13 14 1 121 3 123
|
ply1unit |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ( 𝑞 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝑞 ) = 0 ) ) |
125 |
120 124
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → 𝑞 ∈ ( Unit ‘ 𝑃 ) ) |
126 |
32
|
eldifbd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ¬ 𝑞 ∈ ( Unit ‘ 𝑃 ) ) |
127 |
126
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ¬ 𝑞 ∈ ( Unit ‘ 𝑃 ) ) |
128 |
125 127
|
pm2.21fal |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ⊥ ) |
129 |
128
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } ) ∧ ( 𝐷 ‘ 𝑝 ) = 3 ) → ⊥ ) |
130 |
|
elpri |
⊢ ( ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } → ( ( 𝐷 ‘ 𝑝 ) = 2 ∨ ( 𝐷 ‘ 𝑝 ) = 3 ) ) |
131 |
130
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } ) → ( ( 𝐷 ‘ 𝑝 ) = 2 ∨ ( 𝐷 ‘ 𝑝 ) = 3 ) ) |
132 |
114 129 131
|
mpjaodan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } ) → ⊥ ) |
133 |
79
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → 3 ∈ ℕ0 ) |
134 |
89
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ∈ ℝ ) |
135 |
|
nn0addge1 |
⊢ ( ( ( 𝐷 ‘ 𝑝 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑞 ) ∈ ℕ0 ) → ( 𝐷 ‘ 𝑝 ) ≤ ( ( 𝐷 ‘ 𝑝 ) + ( 𝐷 ‘ 𝑞 ) ) ) |
136 |
134 93 135
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ≤ ( ( 𝐷 ‘ 𝑝 ) + ( 𝐷 ‘ 𝑞 ) ) ) |
137 |
136 100
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ≤ 3 ) |
138 |
|
fznn0 |
⊢ ( 3 ∈ ℕ0 → ( ( 𝐷 ‘ 𝑝 ) ∈ ( 0 ... 3 ) ↔ ( ( 𝐷 ‘ 𝑝 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑝 ) ≤ 3 ) ) ) |
139 |
138
|
biimpar |
⊢ ( ( 3 ∈ ℕ0 ∧ ( ( 𝐷 ‘ 𝑝 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑝 ) ≤ 3 ) ) → ( 𝐷 ‘ 𝑝 ) ∈ ( 0 ... 3 ) ) |
140 |
133 89 137 139
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ∈ ( 0 ... 3 ) ) |
141 |
|
fz0to3un2pr |
⊢ ( 0 ... 3 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
142 |
140 141
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ 𝑝 ) ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ) |
143 |
|
elun |
⊢ ( ( 𝐷 ‘ 𝑝 ) ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ↔ ( ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } ∨ ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } ) ) |
144 |
142 143
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝐷 ‘ 𝑝 ) ∈ { 0 , 1 } ∨ ( 𝐷 ‘ 𝑝 ) ∈ { 2 , 3 } ) ) |
145 |
54 132 144
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ⊥ ) |
146 |
145
|
r19.29ffa |
⊢ ( ( 𝜑 ∧ ∃ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∃ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) → ⊥ ) |
147 |
146
|
inegd |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∃ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) |
148 |
|
ralnex2 |
⊢ ( ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ¬ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ↔ ¬ ∃ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∃ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) |
149 |
147 148
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ¬ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) |
150 |
|
df-ne |
⊢ ( ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ≠ 𝑄 ↔ ¬ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) |
151 |
150
|
2ralbii |
⊢ ( ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ≠ 𝑄 ↔ ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ¬ ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) = 𝑄 ) |
152 |
149 151
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ≠ 𝑄 ) |
153 |
|
eqid |
⊢ ( Unit ‘ 𝑃 ) = ( Unit ‘ 𝑃 ) |
154 |
|
eqid |
⊢ ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 ) |
155 |
|
eqid |
⊢ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) = ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) |
156 |
5 153 154 155 34
|
isirred |
⊢ ( 𝑄 ∈ ( Irred ‘ 𝑃 ) ↔ ( 𝑄 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∧ ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r ‘ 𝑃 ) 𝑞 ) ≠ 𝑄 ) ) |
157 |
19 152 156
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ( Irred ‘ 𝑃 ) ) |