Metamath Proof Explorer


Theorem ply1dg3rt0irred

Description: If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses ply1dg3rt0irred.z 0 = ( 0g𝐹 )
ply1dg3rt0irred.o 𝑂 = ( eval1𝐹 )
ply1dg3rt0irred.d 𝐷 = ( deg1𝐹 )
ply1dg3rt0irred.p 𝑃 = ( Poly1𝐹 )
ply1dg3rt0irred.b 𝐵 = ( Base ‘ 𝑃 )
ply1dg3rt0irred.f ( 𝜑𝐹 ∈ Field )
ply1dg3rt0irred.q ( 𝜑𝑄𝐵 )
ply1dg3rt0irred.1 ( 𝜑 → ( ( 𝑂𝑄 ) “ { 0 } ) = ∅ )
ply1dg3rt0irred.2 ( 𝜑 → ( 𝐷𝑄 ) = 3 )
Assertion ply1dg3rt0irred ( 𝜑𝑄 ∈ ( Irred ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 ply1dg3rt0irred.z 0 = ( 0g𝐹 )
2 ply1dg3rt0irred.o 𝑂 = ( eval1𝐹 )
3 ply1dg3rt0irred.d 𝐷 = ( deg1𝐹 )
4 ply1dg3rt0irred.p 𝑃 = ( Poly1𝐹 )
5 ply1dg3rt0irred.b 𝐵 = ( Base ‘ 𝑃 )
6 ply1dg3rt0irred.f ( 𝜑𝐹 ∈ Field )
7 ply1dg3rt0irred.q ( 𝜑𝑄𝐵 )
8 ply1dg3rt0irred.1 ( 𝜑 → ( ( 𝑂𝑄 ) “ { 0 } ) = ∅ )
9 ply1dg3rt0irred.2 ( 𝜑 → ( 𝐷𝑄 ) = 3 )
10 3ne0 3 ≠ 0
11 10 a1i ( 𝜑 → 3 ≠ 0 )
12 9 11 eqnetrd ( 𝜑 → ( 𝐷𝑄 ) ≠ 0 )
13 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
14 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
15 7 5 eleqtrdi ( 𝜑𝑄 ∈ ( Base ‘ 𝑃 ) )
16 4 13 14 1 6 3 15 ply1unit ( 𝜑 → ( 𝑄 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷𝑄 ) = 0 ) )
17 16 necon3bbid ( 𝜑 → ( ¬ 𝑄 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷𝑄 ) ≠ 0 ) )
18 12 17 mpbird ( 𝜑 → ¬ 𝑄 ∈ ( Unit ‘ 𝑃 ) )
19 7 18 eldifd ( 𝜑𝑄 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) )
20 6 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ Field )
21 simpllr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) )
22 21 eldifad ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝𝐵 )
23 22 5 eleqtrdi ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ∈ ( Base ‘ 𝑃 ) )
24 4 13 14 1 20 3 23 ply1unit ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷𝑝 ) = 0 ) )
25 24 biimpar ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 0 ) → 𝑝 ∈ ( Unit ‘ 𝑃 ) )
26 21 eldifbd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ¬ 𝑝 ∈ ( Unit ‘ 𝑃 ) )
27 26 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 0 ) → ¬ 𝑝 ∈ ( Unit ‘ 𝑃 ) )
28 25 27 pm2.21fal ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 0 ) → ⊥ )
29 28 adantlr ( ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 0 , 1 } ) ∧ ( 𝐷𝑝 ) = 0 ) → ⊥ )
30 6 fldcrngd ( 𝜑𝐹 ∈ CRing )
31 30 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ CRing )
32 simplr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) )
33 32 eldifad ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞𝐵 )
34 eqid ( .r𝑃 ) = ( .r𝑃 )
35 4 5 2 3 1 31 22 33 34 ply1mulrtss ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑝 ) “ { 0 } ) ⊆ ( ( 𝑂 ‘ ( 𝑝 ( .r𝑃 ) 𝑞 ) ) “ { 0 } ) )
36 simpr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 )
37 36 fveq2d ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑂 ‘ ( 𝑝 ( .r𝑃 ) 𝑞 ) ) = ( 𝑂𝑄 ) )
38 37 cnveqd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑂 ‘ ( 𝑝 ( .r𝑃 ) 𝑞 ) ) = ( 𝑂𝑄 ) )
39 38 imaeq1d ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂 ‘ ( 𝑝 ( .r𝑃 ) 𝑞 ) ) “ { 0 } ) = ( ( 𝑂𝑄 ) “ { 0 } ) )
40 35 39 sseqtrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑝 ) “ { 0 } ) ⊆ ( ( 𝑂𝑄 ) “ { 0 } ) )
41 8 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑄 ) “ { 0 } ) = ∅ )
42 40 41 sseqtrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑝 ) “ { 0 } ) ⊆ ∅ )
43 ss0 ( ( ( 𝑂𝑝 ) “ { 0 } ) ⊆ ∅ → ( ( 𝑂𝑝 ) “ { 0 } ) = ∅ )
44 42 43 syl ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑝 ) “ { 0 } ) = ∅ )
45 44 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 1 ) → ( ( 𝑂𝑝 ) “ { 0 } ) = ∅ )
46 20 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 1 ) → 𝐹 ∈ Field )
47 22 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 1 ) → 𝑝𝐵 )
48 simpr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 1 ) → ( 𝐷𝑝 ) = 1 )
49 4 5 2 3 1 46 47 48 ply1dg1rtn0 ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 1 ) → ( ( 𝑂𝑝 ) “ { 0 } ) ≠ ∅ )
50 45 49 pm2.21ddne ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 1 ) → ⊥ )
51 50 adantlr ( ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 0 , 1 } ) ∧ ( 𝐷𝑝 ) = 1 ) → ⊥ )
52 elpri ( ( 𝐷𝑝 ) ∈ { 0 , 1 } → ( ( 𝐷𝑝 ) = 0 ∨ ( 𝐷𝑝 ) = 1 ) )
53 52 adantl ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 0 , 1 } ) → ( ( 𝐷𝑝 ) = 0 ∨ ( 𝐷𝑝 ) = 1 ) )
54 29 51 53 mpjaodan ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 0 , 1 } ) → ⊥ )
55 4 5 2 3 1 31 33 22 34 ply1mulrtss ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑞 ) “ { 0 } ) ⊆ ( ( 𝑂 ‘ ( 𝑞 ( .r𝑃 ) 𝑝 ) ) “ { 0 } ) )
56 fldidom ( 𝐹 ∈ Field → 𝐹 ∈ IDomn )
57 6 56 syl ( 𝜑𝐹 ∈ IDomn )
58 4 ply1idom ( 𝐹 ∈ IDomn → 𝑃 ∈ IDomn )
59 57 58 syl ( 𝜑𝑃 ∈ IDomn )
60 59 idomcringd ( 𝜑𝑃 ∈ CRing )
61 60 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑃 ∈ CRing )
62 5 34 61 33 22 crngcomd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑞 ( .r𝑃 ) 𝑝 ) = ( 𝑝 ( .r𝑃 ) 𝑞 ) )
63 62 36 eqtrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑞 ( .r𝑃 ) 𝑝 ) = 𝑄 )
64 63 fveq2d ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑂 ‘ ( 𝑞 ( .r𝑃 ) 𝑝 ) ) = ( 𝑂𝑄 ) )
65 64 cnveqd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑂 ‘ ( 𝑞 ( .r𝑃 ) 𝑝 ) ) = ( 𝑂𝑄 ) )
66 65 imaeq1d ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂 ‘ ( 𝑞 ( .r𝑃 ) 𝑝 ) ) “ { 0 } ) = ( ( 𝑂𝑄 ) “ { 0 } ) )
67 66 41 eqtrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂 ‘ ( 𝑞 ( .r𝑃 ) 𝑝 ) ) “ { 0 } ) = ∅ )
68 55 67 sseqtrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑞 ) “ { 0 } ) ⊆ ∅ )
69 ss0 ( ( ( 𝑂𝑞 ) “ { 0 } ) ⊆ ∅ → ( ( 𝑂𝑞 ) “ { 0 } ) = ∅ )
70 68 69 syl ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝑂𝑞 ) “ { 0 } ) = ∅ )
71 70 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( ( 𝑂𝑞 ) “ { 0 } ) = ∅ )
72 20 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → 𝐹 ∈ Field )
73 33 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → 𝑞𝐵 )
74 30 crngringd ( 𝜑𝐹 ∈ Ring )
75 74 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ Ring )
76 eqid ( 0g𝑃 ) = ( 0g𝑃 )
77 59 idomdomd ( 𝜑𝑃 ∈ Domn )
78 77 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑃 ∈ Domn )
79 3nn0 3 ∈ ℕ0
80 9 79 eqeltrdi ( 𝜑 → ( 𝐷𝑄 ) ∈ ℕ0 )
81 3 4 76 5 deg1nn0clb ( ( 𝐹 ∈ Ring ∧ 𝑄𝐵 ) → ( 𝑄 ≠ ( 0g𝑃 ) ↔ ( 𝐷𝑄 ) ∈ ℕ0 ) )
82 81 biimpar ( ( ( 𝐹 ∈ Ring ∧ 𝑄𝐵 ) ∧ ( 𝐷𝑄 ) ∈ ℕ0 ) → 𝑄 ≠ ( 0g𝑃 ) )
83 74 7 80 82 syl21anc ( 𝜑𝑄 ≠ ( 0g𝑃 ) )
84 83 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑄 ≠ ( 0g𝑃 ) )
85 36 84 eqnetrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ( .r𝑃 ) 𝑞 ) ≠ ( 0g𝑃 ) )
86 5 34 76 78 22 33 85 domnmuln0rd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝑝 ≠ ( 0g𝑃 ) ∧ 𝑞 ≠ ( 0g𝑃 ) ) )
87 86 simpld ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑝 ≠ ( 0g𝑃 ) )
88 3 4 76 5 deg1nn0cl ( ( 𝐹 ∈ Ring ∧ 𝑝𝐵𝑝 ≠ ( 0g𝑃 ) ) → ( 𝐷𝑝 ) ∈ ℕ0 )
89 75 22 87 88 syl3anc ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ∈ ℕ0 )
90 89 nn0cnd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ∈ ℂ )
91 86 simprd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ≠ ( 0g𝑃 ) )
92 3 4 76 5 deg1nn0cl ( ( 𝐹 ∈ Ring ∧ 𝑞𝐵𝑞 ≠ ( 0g𝑃 ) ) → ( 𝐷𝑞 ) ∈ ℕ0 )
93 75 33 91 92 syl3anc ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑞 ) ∈ ℕ0 )
94 93 nn0cnd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑞 ) ∈ ℂ )
95 36 fveq2d ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ ( 𝑝 ( .r𝑃 ) 𝑞 ) ) = ( 𝐷𝑄 ) )
96 57 idomdomd ( 𝜑𝐹 ∈ Domn )
97 96 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝐹 ∈ Domn )
98 3 4 5 34 76 97 22 87 33 91 deg1mul ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷 ‘ ( 𝑝 ( .r𝑃 ) 𝑞 ) ) = ( ( 𝐷𝑝 ) + ( 𝐷𝑞 ) ) )
99 9 ad3antrrr ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑄 ) = 3 )
100 95 98 99 3eqtr3d ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝐷𝑝 ) + ( 𝐷𝑞 ) ) = 3 )
101 90 94 100 mvlladdd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑞 ) = ( 3 − ( 𝐷𝑝 ) ) )
102 101 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( 𝐷𝑞 ) = ( 3 − ( 𝐷𝑝 ) ) )
103 simpr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( 𝐷𝑝 ) = 2 )
104 103 oveq2d ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( 3 − ( 𝐷𝑝 ) ) = ( 3 − 2 ) )
105 3cn 3 ∈ ℂ
106 2cn 2 ∈ ℂ
107 ax-1cn 1 ∈ ℂ
108 2p1e3 ( 2 + 1 ) = 3
109 105 106 107 108 subaddrii ( 3 − 2 ) = 1
110 109 a1i ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( 3 − 2 ) = 1 )
111 102 104 110 3eqtrd ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( 𝐷𝑞 ) = 1 )
112 4 5 2 3 1 72 73 111 ply1dg1rtn0 ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ( ( 𝑂𝑞 ) “ { 0 } ) ≠ ∅ )
113 71 112 pm2.21ddne ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 2 ) → ⊥ )
114 113 adantlr ( ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 2 , 3 } ) ∧ ( 𝐷𝑝 ) = 2 ) → ⊥ )
115 101 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ( 𝐷𝑞 ) = ( 3 − ( 𝐷𝑝 ) ) )
116 simpr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ( 𝐷𝑝 ) = 3 )
117 116 oveq2d ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ( 3 − ( 𝐷𝑝 ) ) = ( 3 − 3 ) )
118 105 subidi ( 3 − 3 ) = 0
119 118 a1i ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ( 3 − 3 ) = 0 )
120 115 117 119 3eqtrd ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ( 𝐷𝑞 ) = 0 )
121 20 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → 𝐹 ∈ Field )
122 33 5 eleqtrdi ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 𝑞 ∈ ( Base ‘ 𝑃 ) )
123 122 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → 𝑞 ∈ ( Base ‘ 𝑃 ) )
124 4 13 14 1 121 3 123 ply1unit ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ( 𝑞 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷𝑞 ) = 0 ) )
125 120 124 mpbird ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → 𝑞 ∈ ( Unit ‘ 𝑃 ) )
126 32 eldifbd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ¬ 𝑞 ∈ ( Unit ‘ 𝑃 ) )
127 126 adantr ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ¬ 𝑞 ∈ ( Unit ‘ 𝑃 ) )
128 125 127 pm2.21fal ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) = 3 ) → ⊥ )
129 128 adantlr ( ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 2 , 3 } ) ∧ ( 𝐷𝑝 ) = 3 ) → ⊥ )
130 elpri ( ( 𝐷𝑝 ) ∈ { 2 , 3 } → ( ( 𝐷𝑝 ) = 2 ∨ ( 𝐷𝑝 ) = 3 ) )
131 130 adantl ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 2 , 3 } ) → ( ( 𝐷𝑝 ) = 2 ∨ ( 𝐷𝑝 ) = 3 ) )
132 114 129 131 mpjaodan ( ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) ∧ ( 𝐷𝑝 ) ∈ { 2 , 3 } ) → ⊥ )
133 79 a1i ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → 3 ∈ ℕ0 )
134 89 nn0red ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ∈ ℝ )
135 nn0addge1 ( ( ( 𝐷𝑝 ) ∈ ℝ ∧ ( 𝐷𝑞 ) ∈ ℕ0 ) → ( 𝐷𝑝 ) ≤ ( ( 𝐷𝑝 ) + ( 𝐷𝑞 ) ) )
136 134 93 135 syl2anc ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ≤ ( ( 𝐷𝑝 ) + ( 𝐷𝑞 ) ) )
137 136 100 breqtrd ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ≤ 3 )
138 fznn0 ( 3 ∈ ℕ0 → ( ( 𝐷𝑝 ) ∈ ( 0 ... 3 ) ↔ ( ( 𝐷𝑝 ) ∈ ℕ0 ∧ ( 𝐷𝑝 ) ≤ 3 ) ) )
139 138 biimpar ( ( 3 ∈ ℕ0 ∧ ( ( 𝐷𝑝 ) ∈ ℕ0 ∧ ( 𝐷𝑝 ) ≤ 3 ) ) → ( 𝐷𝑝 ) ∈ ( 0 ... 3 ) )
140 133 89 137 139 syl12anc ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ∈ ( 0 ... 3 ) )
141 fz0to3un2pr ( 0 ... 3 ) = ( { 0 , 1 } ∪ { 2 , 3 } )
142 140 141 eleqtrdi ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( 𝐷𝑝 ) ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) )
143 elun ( ( 𝐷𝑝 ) ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ↔ ( ( 𝐷𝑝 ) ∈ { 0 , 1 } ∨ ( 𝐷𝑝 ) ∈ { 2 , 3 } ) )
144 142 143 sylib ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ( ( 𝐷𝑝 ) ∈ { 0 , 1 } ∨ ( 𝐷𝑝 ) ∈ { 2 , 3 } ) )
145 54 132 144 mpjaodan ( ( ( ( 𝜑𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ) ∧ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ⊥ )
146 145 r19.29ffa ( ( 𝜑 ∧ ∃ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∃ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ) → ⊥ )
147 146 inegd ( 𝜑 → ¬ ∃ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∃ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 )
148 ralnex2 ( ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ¬ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 ↔ ¬ ∃ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∃ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 )
149 147 148 sylibr ( 𝜑 → ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ¬ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 )
150 df-ne ( ( 𝑝 ( .r𝑃 ) 𝑞 ) ≠ 𝑄 ↔ ¬ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 )
151 150 2ralbii ( ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r𝑃 ) 𝑞 ) ≠ 𝑄 ↔ ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ¬ ( 𝑝 ( .r𝑃 ) 𝑞 ) = 𝑄 )
152 149 151 sylibr ( 𝜑 → ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r𝑃 ) 𝑞 ) ≠ 𝑄 )
153 eqid ( Unit ‘ 𝑃 ) = ( Unit ‘ 𝑃 )
154 eqid ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 )
155 eqid ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) = ( 𝐵 ∖ ( Unit ‘ 𝑃 ) )
156 5 153 154 155 34 isirred ( 𝑄 ∈ ( Irred ‘ 𝑃 ) ↔ ( 𝑄 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∧ ∀ 𝑝 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ∀ 𝑞 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑃 ) ) ( 𝑝 ( .r𝑃 ) 𝑞 ) ≠ 𝑄 ) )
157 19 152 156 sylanbrc ( 𝜑𝑄 ∈ ( Irred ‘ 𝑃 ) )