| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m1pmeq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝐹 ) |
| 2 |
|
m1pmeq.m |
⊢ 𝑀 = ( Monic1p ‘ 𝐹 ) |
| 3 |
|
m1pmeq.u |
⊢ 𝑈 = ( Unit ‘ 𝑃 ) |
| 4 |
|
m1pmeq.t |
⊢ · = ( .r ‘ 𝑃 ) |
| 5 |
|
m1pmeq.r |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
| 6 |
|
m1pmeq.f |
⊢ ( 𝜑 → 𝐼 ∈ 𝑀 ) |
| 7 |
|
m1pmeq.g |
⊢ ( 𝜑 → 𝐽 ∈ 𝑀 ) |
| 8 |
|
m1pmeq.h |
⊢ ( 𝜑 → 𝐾 ∈ 𝑈 ) |
| 9 |
|
m1pmeq.1 |
⊢ ( 𝜑 → 𝐼 = ( 𝐾 · 𝐽 ) ) |
| 10 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 11 |
10
|
drngringd |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 13 |
12 3
|
unitcl |
⊢ ( 𝐾 ∈ 𝑈 → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
| 14 |
8 13
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
| 15 |
8 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( Unit ‘ 𝑃 ) ) |
| 16 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 19 |
|
eqid |
⊢ ( deg1 ‘ 𝐹 ) = ( deg1 ‘ 𝐹 ) |
| 20 |
1 16 17 18 5 19 14
|
ply1unit |
⊢ ( 𝜑 → ( 𝐾 ∈ ( Unit ‘ 𝑃 ) ↔ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) = 0 ) ) |
| 21 |
15 20
|
mpbid |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) = 0 ) |
| 22 |
|
0le0 |
⊢ 0 ≤ 0 |
| 23 |
21 22
|
eqbrtrdi |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ≤ 0 ) |
| 24 |
19 1 12 16
|
deg1le0 |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝐾 ∈ ( Base ‘ 𝑃 ) ) → ( ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ≤ 0 ↔ 𝐾 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ) ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( ( 𝐹 ∈ Ring ∧ 𝐾 ∈ ( Base ‘ 𝑃 ) ) ∧ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ≤ 0 ) → 𝐾 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ) ) |
| 26 |
11 14 23 25
|
syl21anc |
⊢ ( 𝜑 → 𝐾 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ) ) |
| 27 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 28 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 29 |
21
|
fveq2d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) = ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ) |
| 30 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 31 |
21 30
|
eqeltrdi |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ∈ ℕ0 ) |
| 32 |
|
eqid |
⊢ ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐾 ) |
| 33 |
32 12 1 17
|
coe1fvalcl |
⊢ ( ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 34 |
14 31 33
|
syl2anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 35 |
29 34
|
eqeltrrd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ∈ ( Base ‘ 𝐹 ) ) |
| 36 |
17 27 28 11 35
|
ringridmd |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ( .r ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ) |
| 37 |
9
|
fveq2d |
⊢ ( 𝜑 → ( coe1 ‘ 𝐼 ) = ( coe1 ‘ ( 𝐾 · 𝐽 ) ) ) |
| 38 |
9
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐹 ) ‘ 𝐼 ) = ( ( deg1 ‘ 𝐹 ) ‘ ( 𝐾 · 𝐽 ) ) ) |
| 39 |
|
eqid |
⊢ ( RLReg ‘ 𝐹 ) = ( RLReg ‘ 𝐹 ) |
| 40 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 41 |
|
drngnzr |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ NzRing ) |
| 42 |
10 41
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ NzRing ) |
| 43 |
1
|
ply1nz |
⊢ ( 𝐹 ∈ NzRing → 𝑃 ∈ NzRing ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ NzRing ) |
| 45 |
3 40 44 8
|
unitnz |
⊢ ( 𝜑 → 𝐾 ≠ ( 0g ‘ 𝑃 ) ) |
| 46 |
|
fldidom |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ IDomn ) |
| 47 |
5 46
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ IDomn ) |
| 48 |
47
|
idomdomd |
⊢ ( 𝜑 → 𝐹 ∈ Domn ) |
| 49 |
19 1 18 12 40 11 14 23
|
deg1le0eq0 |
⊢ ( 𝜑 → ( 𝐾 = ( 0g ‘ 𝑃 ) ↔ ( ( coe1 ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐹 ) ) ) |
| 50 |
49
|
necon3bid |
⊢ ( 𝜑 → ( 𝐾 ≠ ( 0g ‘ 𝑃 ) ↔ ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ≠ ( 0g ‘ 𝐹 ) ) ) |
| 51 |
45 50
|
mpbid |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ≠ ( 0g ‘ 𝐹 ) ) |
| 52 |
29 51
|
eqnetrd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ≠ ( 0g ‘ 𝐹 ) ) |
| 53 |
17 39 18
|
domnrrg |
⊢ ( ( 𝐹 ∈ Domn ∧ ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ≠ ( 0g ‘ 𝐹 ) ) → ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ∈ ( RLReg ‘ 𝐹 ) ) |
| 54 |
48 34 52 53
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ∈ ( RLReg ‘ 𝐹 ) ) |
| 55 |
1 12 2
|
mon1pcl |
⊢ ( 𝐽 ∈ 𝑀 → 𝐽 ∈ ( Base ‘ 𝑃 ) ) |
| 56 |
7 55
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( Base ‘ 𝑃 ) ) |
| 57 |
1 40 2
|
mon1pn0 |
⊢ ( 𝐽 ∈ 𝑀 → 𝐽 ≠ ( 0g ‘ 𝑃 ) ) |
| 58 |
7 57
|
syl |
⊢ ( 𝜑 → 𝐽 ≠ ( 0g ‘ 𝑃 ) ) |
| 59 |
19 1 39 12 4 40 11 14 45 54 56 58
|
deg1mul2 |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐹 ) ‘ ( 𝐾 · 𝐽 ) ) = ( ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) + ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) |
| 60 |
38 59
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐹 ) ‘ 𝐼 ) = ( ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) + ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) |
| 61 |
37 60
|
fveq12d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐼 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐼 ) ) = ( ( coe1 ‘ ( 𝐾 · 𝐽 ) ) ‘ ( ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) + ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) ) |
| 62 |
19 28 2
|
mon1pldg |
⊢ ( 𝐼 ∈ 𝑀 → ( ( coe1 ‘ 𝐼 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐼 ) ) = ( 1r ‘ 𝐹 ) ) |
| 63 |
6 62
|
syl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐼 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐼 ) ) = ( 1r ‘ 𝐹 ) ) |
| 64 |
1 4 27 12 19 40 11 14 45 56 58
|
coe1mul4 |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐾 · 𝐽 ) ) ‘ ( ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) + ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ( .r ‘ 𝐹 ) ( ( coe1 ‘ 𝐽 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) ) |
| 65 |
19 28 2
|
mon1pldg |
⊢ ( 𝐽 ∈ 𝑀 → ( ( coe1 ‘ 𝐽 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) = ( 1r ‘ 𝐹 ) ) |
| 66 |
7 65
|
syl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐽 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) = ( 1r ‘ 𝐹 ) ) |
| 67 |
29 66
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐾 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) ) ( .r ‘ 𝐹 ) ( ( coe1 ‘ 𝐽 ) ‘ ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ( .r ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 68 |
64 67
|
eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐾 · 𝐽 ) ) ‘ ( ( ( deg1 ‘ 𝐹 ) ‘ 𝐾 ) + ( ( deg1 ‘ 𝐹 ) ‘ 𝐽 ) ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ( .r ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 69 |
61 63 68
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ( .r ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 70 |
36 69
|
eqtr3d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐾 ) ‘ 0 ) = ( 1r ‘ 𝐹 ) ) |
| 71 |
70
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐾 ) ‘ 0 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 72 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 73 |
1 16 28 72 11
|
ply1ascl1 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝑃 ) ) |
| 74 |
26 71 73
|
3eqtrd |
⊢ ( 𝜑 → 𝐾 = ( 1r ‘ 𝑃 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( 𝐾 · 𝐽 ) = ( ( 1r ‘ 𝑃 ) · 𝐽 ) ) |
| 76 |
1
|
ply1ring |
⊢ ( 𝐹 ∈ Ring → 𝑃 ∈ Ring ) |
| 77 |
11 76
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 78 |
12 4 72 77 56
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑃 ) · 𝐽 ) = 𝐽 ) |
| 79 |
9 75 78
|
3eqtrd |
⊢ ( 𝜑 → 𝐼 = 𝐽 ) |