Step |
Hyp |
Ref |
Expression |
1 |
|
ply1fermltl.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑃 ) |
2 |
|
ply1fermltl.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑍 ) |
3 |
|
ply1fermltl.x |
⊢ 𝑋 = ( var1 ‘ 𝑍 ) |
4 |
|
ply1fermltl.l |
⊢ + = ( +g ‘ 𝑊 ) |
5 |
|
ply1fermltl.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑊 ) |
6 |
|
ply1fermltl.t |
⊢ ↑ = ( .g ‘ 𝑁 ) |
7 |
|
ply1fermltl.c |
⊢ 𝐶 = ( algSc ‘ 𝑊 ) |
8 |
|
ply1fermltl.a |
⊢ 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) |
9 |
|
ply1fermltl.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
10 |
|
ply1fermltl.1 |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
12 |
5
|
fveq2i |
⊢ ( .g ‘ 𝑁 ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
13 |
6 12
|
eqtri |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
14 |
|
eqid |
⊢ ( chr ‘ 𝑊 ) = ( chr ‘ 𝑊 ) |
15 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
16 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
17 |
1
|
zncrng |
⊢ ( 𝑃 ∈ ℕ0 → 𝑍 ∈ CRing ) |
18 |
9 15 16 17
|
4syl |
⊢ ( 𝜑 → 𝑍 ∈ CRing ) |
19 |
2
|
ply1crng |
⊢ ( 𝑍 ∈ CRing → 𝑊 ∈ CRing ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ CRing ) |
21 |
2
|
ply1chr |
⊢ ( 𝑍 ∈ CRing → ( chr ‘ 𝑊 ) = ( chr ‘ 𝑍 ) ) |
22 |
18 21
|
syl |
⊢ ( 𝜑 → ( chr ‘ 𝑊 ) = ( chr ‘ 𝑍 ) ) |
23 |
1
|
znchr |
⊢ ( 𝑃 ∈ ℕ0 → ( chr ‘ 𝑍 ) = 𝑃 ) |
24 |
9 15 16 23
|
4syl |
⊢ ( 𝜑 → ( chr ‘ 𝑍 ) = 𝑃 ) |
25 |
22 24
|
eqtrd |
⊢ ( 𝜑 → ( chr ‘ 𝑊 ) = 𝑃 ) |
26 |
25 9
|
eqeltrd |
⊢ ( 𝜑 → ( chr ‘ 𝑊 ) ∈ ℙ ) |
27 |
18
|
crngringd |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
28 |
3 2 11
|
vr1cl |
⊢ ( 𝑍 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
30 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑍 ) = ( ℤRHom ‘ 𝑍 ) |
31 |
30
|
zrhrhm |
⊢ ( 𝑍 ∈ Ring → ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) ) |
32 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
34 |
32 33
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) → ( ℤRHom ‘ 𝑍 ) : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
35 |
27 31 34
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑍 ) : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
36 |
35 10
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝑍 ) ) |
37 |
2 7 33 11
|
ply1sclcl |
⊢ ( ( 𝑍 ∈ Ring ∧ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝑍 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ∈ ( Base ‘ 𝑊 ) ) |
38 |
27 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ∈ ( Base ‘ 𝑊 ) ) |
39 |
8 38
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
40 |
11 4 13 14 20 26 29 39
|
freshmansdream |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ ( 𝑋 + 𝐴 ) ) = ( ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) + ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) ) ) |
41 |
25
|
oveq1d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) ) |
42 |
25
|
oveq1d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) = ( 𝑃 ↑ 𝑋 ) ) |
43 |
25
|
oveq1d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) = ( 𝑃 ↑ 𝐴 ) ) |
44 |
2
|
ply1assa |
⊢ ( 𝑍 ∈ CRing → 𝑊 ∈ AssAlg ) |
45 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
46 |
7 45
|
asclrhm |
⊢ ( 𝑊 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
47 |
18 44 46
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
48 |
18
|
crnggrpd |
⊢ ( 𝜑 → 𝑍 ∈ Grp ) |
49 |
2
|
ply1sca |
⊢ ( 𝑍 ∈ Grp → 𝑍 = ( Scalar ‘ 𝑊 ) ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → 𝑍 = ( Scalar ‘ 𝑊 ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( 𝑍 RingHom 𝑊 ) = ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
52 |
47 51
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑍 RingHom 𝑊 ) ) |
53 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
54 |
53 5
|
rhmmhm |
⊢ ( 𝐶 ∈ ( 𝑍 RingHom 𝑊 ) → 𝐶 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom 𝑁 ) ) |
55 |
52 54
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom 𝑁 ) ) |
56 |
9 15 16
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
57 |
53 33
|
mgpbas |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
58 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑍 ) ) = ( .g ‘ ( mulGrp ‘ 𝑍 ) ) |
59 |
57 58 6
|
mhmmulg |
⊢ ( ( 𝐶 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom 𝑁 ) ∧ 𝑃 ∈ ℕ0 ∧ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝑍 ) ) → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) ) |
60 |
55 56 36 59
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) ) |
61 |
8
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) |
62 |
61
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) ) |
63 |
60 62
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ 𝐴 ) ) |
64 |
1 33 58
|
znfermltl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝑍 ) ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) |
65 |
9 36 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) |
66 |
65
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) |
67 |
66 8
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝐸 ) ) ) = 𝐴 ) |
68 |
43 63 67
|
3eqtr2d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) = 𝐴 ) |
69 |
42 68
|
oveq12d |
⊢ ( 𝜑 → ( ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) + ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |
70 |
40 41 69
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |