Step |
Hyp |
Ref |
Expression |
1 |
|
znfermltl.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑃 ) |
2 |
|
znfermltl.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
3 |
|
znfermltl.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑍 ) ) |
4 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
5 |
4
|
nnnn0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
6 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → 𝑃 ∈ ℕ0 ) |
7 |
|
simplr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → 𝑎 ∈ ℤ ) |
8 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) |
9 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
10 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
11 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
12 |
10 11
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
13 |
9 12
|
sseqtri |
⊢ ℤ ⊆ ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
14 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
15 |
|
eqid |
⊢ ( invg ‘ ( mulGrp ‘ ℂfld ) ) = ( invg ‘ ( mulGrp ‘ ℂfld ) ) |
16 |
|
cnring |
⊢ ℂfld ∈ Ring |
17 |
10
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
18 |
16 17
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
19 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
20 |
10 19
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
21 |
|
1z |
⊢ 1 ∈ ℤ |
22 |
20 21
|
eqeltrri |
⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) ∈ ℤ |
23 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
24 |
8 12 23
|
ress0g |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) ) |
25 |
18 22 9 24
|
mp3an |
⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
26 |
8 13 14 15 25
|
ressmulgnn0 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑎 ∈ ℤ ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝑎 ) = ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑎 ) ) |
27 |
6 7 26
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝑎 ) = ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑎 ) ) |
28 |
7
|
zcnd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → 𝑎 ∈ ℂ ) |
29 |
|
cnfldexp |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0 ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑎 ) = ( 𝑎 ↑ 𝑃 ) ) |
30 |
28 6 29
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑎 ) = ( 𝑎 ↑ 𝑃 ) ) |
31 |
27 30
|
eqtrd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝑎 ) = ( 𝑎 ↑ 𝑃 ) ) |
32 |
31
|
fveq2d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝑎 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ) |
33 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
34 |
1
|
zncrng |
⊢ ( 𝑃 ∈ ℕ0 → 𝑍 ∈ CRing ) |
35 |
34
|
crngringd |
⊢ ( 𝑃 ∈ ℕ0 → 𝑍 ∈ Ring ) |
36 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑍 ) = ( ℤRHom ‘ 𝑍 ) |
37 |
36
|
zrhrhm |
⊢ ( 𝑍 ∈ Ring → ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) ) |
38 |
35 37
|
syl |
⊢ ( 𝑃 ∈ ℕ0 → ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) ) |
39 |
|
zringmpg |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring ) |
40 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
41 |
39 40
|
rhmmhm |
⊢ ( ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) → ( ℤRHom ‘ 𝑍 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
42 |
4 33 38 41
|
4syl |
⊢ ( 𝑃 ∈ ℙ → ( ℤRHom ‘ 𝑍 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( ℤRHom ‘ 𝑍 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
44 |
8 12
|
ressbas2 |
⊢ ( ℤ ⊆ ℂ → ℤ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) ) |
45 |
9 44
|
ax-mp |
⊢ ℤ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
46 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) = ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
47 |
45 46 3
|
mhmmulg |
⊢ ( ( ( ℤRHom ‘ 𝑍 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝑍 ) ) ∧ 𝑃 ∈ ℕ0 ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝑎 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
48 |
43 6 7 47
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝑎 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
49 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℤ ) |
50 |
4
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑃 ∈ ℕ ) |
51 |
50
|
nnnn0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑃 ∈ ℕ0 ) |
52 |
|
zexpcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0 ) → ( 𝑎 ↑ 𝑃 ) ∈ ℤ ) |
53 |
49 51 52
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ↑ 𝑃 ) ∈ ℤ ) |
54 |
|
eqid |
⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) |
55 |
54
|
zringsubgval |
⊢ ( ( ( 𝑎 ↑ 𝑃 ) ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) = ( ( 𝑎 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝑎 ) ) |
56 |
53 49 55
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) = ( ( 𝑎 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝑎 ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝑎 ) ) ) |
58 |
53
|
zred |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ↑ 𝑃 ) ∈ ℝ ) |
59 |
|
zre |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ ) |
60 |
59
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℝ ) |
61 |
50
|
nnrpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑃 ∈ ℝ+ ) |
62 |
|
fermltl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 ↑ 𝑃 ) mod 𝑃 ) = ( 𝑎 mod 𝑃 ) ) |
63 |
|
eqidd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( 𝑎 mod 𝑃 ) = ( 𝑎 mod 𝑃 ) ) |
64 |
58 60 60 60 61 62 63
|
modsub12d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) mod 𝑃 ) = ( ( 𝑎 − 𝑎 ) mod 𝑃 ) ) |
65 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
66 |
65
|
subidd |
⊢ ( 𝑎 ∈ ℤ → ( 𝑎 − 𝑎 ) = 0 ) |
67 |
66
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( 𝑎 − 𝑎 ) = 0 ) |
68 |
67
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 − 𝑎 ) mod 𝑃 ) = ( 0 mod 𝑃 ) ) |
69 |
|
0mod |
⊢ ( 𝑃 ∈ ℝ+ → ( 0 mod 𝑃 ) = 0 ) |
70 |
61 69
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( 0 mod 𝑃 ) = 0 ) |
71 |
64 68 70
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) mod 𝑃 ) = 0 ) |
72 |
53 49
|
zsubcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ∈ ℤ ) |
73 |
|
dvdsval3 |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ↔ ( ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) mod 𝑃 ) = 0 ) ) |
74 |
50 72 73
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ↔ ( ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) mod 𝑃 ) = 0 ) ) |
75 |
71 74
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑃 ∥ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) |
76 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
77 |
1 36 76
|
zndvds0 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) = ( 0g ‘ 𝑍 ) ↔ 𝑃 ∥ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) ) |
78 |
51 72 77
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) = ( 0g ‘ 𝑍 ) ↔ 𝑃 ∥ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) ) |
79 |
75 78
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) − 𝑎 ) ) = ( 0g ‘ 𝑍 ) ) |
80 |
|
rhmghm |
⊢ ( ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) → ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring GrpHom 𝑍 ) ) |
81 |
51 38 80
|
3syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring GrpHom 𝑍 ) ) |
82 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
83 |
|
eqid |
⊢ ( -g ‘ 𝑍 ) = ( -g ‘ 𝑍 ) |
84 |
82 54 83
|
ghmsub |
⊢ ( ( ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring GrpHom 𝑍 ) ∧ ( 𝑎 ↑ 𝑃 ) ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝑎 ) ) = ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ( -g ‘ 𝑍 ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
85 |
81 53 49 84
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( ( 𝑎 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝑎 ) ) = ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ( -g ‘ 𝑍 ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
86 |
57 79 85
|
3eqtr3rd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ( -g ‘ 𝑍 ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) = ( 0g ‘ 𝑍 ) ) |
87 |
4 33 35
|
3syl |
⊢ ( 𝑃 ∈ ℙ → 𝑍 ∈ Ring ) |
88 |
87
|
ringgrpd |
⊢ ( 𝑃 ∈ ℙ → 𝑍 ∈ Grp ) |
89 |
88
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → 𝑍 ∈ Grp ) |
90 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
91 |
82 90
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑍 ) ∈ ( ℤring RingHom 𝑍 ) → ( ℤRHom ‘ 𝑍 ) : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
92 |
51 38 91
|
3syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ℤRHom ‘ 𝑍 ) : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
93 |
92 53
|
ffvelrnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ∈ ( Base ‘ 𝑍 ) ) |
94 |
92 49
|
ffvelrnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑍 ) ) |
95 |
90 76 83
|
grpsubeq0 |
⊢ ( ( 𝑍 ∈ Grp ∧ ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ∈ ( Base ‘ 𝑍 ) ∧ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑍 ) ) → ( ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ( -g ‘ 𝑍 ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) = ( 0g ‘ 𝑍 ) ↔ ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
96 |
89 93 94 95
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) ( -g ‘ 𝑍 ) ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) = ( 0g ‘ 𝑍 ) ↔ ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
97 |
86 96
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) |
98 |
97
|
ad4ant13 |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( ( ℤRHom ‘ 𝑍 ) ‘ ( 𝑎 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) |
99 |
32 48 98
|
3eqtr3d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( 𝑃 ↑ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) |
100 |
|
oveq2 |
⊢ ( 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
101 |
100
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) ) |
102 |
|
simpr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) |
103 |
99 101 102
|
3eqtr4d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |
104 |
1 2 36
|
znzrhfo |
⊢ ( 𝑃 ∈ ℕ0 → ( ℤRHom ‘ 𝑍 ) : ℤ –onto→ 𝐵 ) |
105 |
4 33 104
|
3syl |
⊢ ( 𝑃 ∈ ℙ → ( ℤRHom ‘ 𝑍 ) : ℤ –onto→ 𝐵 ) |
106 |
|
foelrn |
⊢ ( ( ( ℤRHom ‘ 𝑍 ) : ℤ –onto→ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) |
107 |
105 106
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( ( ℤRHom ‘ 𝑍 ) ‘ 𝑎 ) ) |
108 |
103 107
|
r19.29a |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵 ) → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |