Step |
Hyp |
Ref |
Expression |
1 |
|
znfermltl.z |
|- Z = ( Z/nZ ` P ) |
2 |
|
znfermltl.b |
|- B = ( Base ` Z ) |
3 |
|
znfermltl.p |
|- .^ = ( .g ` ( mulGrp ` Z ) ) |
4 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
5 |
4
|
nnnn0d |
|- ( P e. Prime -> P e. NN0 ) |
6 |
5
|
ad3antrrr |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> P e. NN0 ) |
7 |
|
simplr |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> a e. ZZ ) |
8 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( ( mulGrp ` CCfld ) |`s ZZ ) |
9 |
|
zsscn |
|- ZZ C_ CC |
10 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
11 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
12 |
10 11
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
13 |
9 12
|
sseqtri |
|- ZZ C_ ( Base ` ( mulGrp ` CCfld ) ) |
14 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
15 |
|
eqid |
|- ( invg ` ( mulGrp ` CCfld ) ) = ( invg ` ( mulGrp ` CCfld ) ) |
16 |
|
cnring |
|- CCfld e. Ring |
17 |
10
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
18 |
16 17
|
ax-mp |
|- ( mulGrp ` CCfld ) e. Mnd |
19 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
20 |
10 19
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
21 |
|
1z |
|- 1 e. ZZ |
22 |
20 21
|
eqeltrri |
|- ( 0g ` ( mulGrp ` CCfld ) ) e. ZZ |
23 |
|
eqid |
|- ( 0g ` ( mulGrp ` CCfld ) ) = ( 0g ` ( mulGrp ` CCfld ) ) |
24 |
8 12 23
|
ress0g |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ ( 0g ` ( mulGrp ` CCfld ) ) e. ZZ /\ ZZ C_ CC ) -> ( 0g ` ( mulGrp ` CCfld ) ) = ( 0g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) ) |
25 |
18 22 9 24
|
mp3an |
|- ( 0g ` ( mulGrp ` CCfld ) ) = ( 0g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) |
26 |
8 13 14 15 25
|
ressmulgnn0 |
|- ( ( P e. NN0 /\ a e. ZZ ) -> ( P ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) a ) = ( P ( .g ` ( mulGrp ` CCfld ) ) a ) ) |
27 |
6 7 26
|
syl2anc |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( P ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) a ) = ( P ( .g ` ( mulGrp ` CCfld ) ) a ) ) |
28 |
7
|
zcnd |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> a e. CC ) |
29 |
|
cnfldexp |
|- ( ( a e. CC /\ P e. NN0 ) -> ( P ( .g ` ( mulGrp ` CCfld ) ) a ) = ( a ^ P ) ) |
30 |
28 6 29
|
syl2anc |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( P ( .g ` ( mulGrp ` CCfld ) ) a ) = ( a ^ P ) ) |
31 |
27 30
|
eqtrd |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( P ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) a ) = ( a ^ P ) ) |
32 |
31
|
fveq2d |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( ( ZRHom ` Z ) ` ( P ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) a ) ) = ( ( ZRHom ` Z ) ` ( a ^ P ) ) ) |
33 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
34 |
1
|
zncrng |
|- ( P e. NN0 -> Z e. CRing ) |
35 |
34
|
crngringd |
|- ( P e. NN0 -> Z e. Ring ) |
36 |
|
eqid |
|- ( ZRHom ` Z ) = ( ZRHom ` Z ) |
37 |
36
|
zrhrhm |
|- ( Z e. Ring -> ( ZRHom ` Z ) e. ( ZZring RingHom Z ) ) |
38 |
35 37
|
syl |
|- ( P e. NN0 -> ( ZRHom ` Z ) e. ( ZZring RingHom Z ) ) |
39 |
|
zringmpg |
|- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( mulGrp ` ZZring ) |
40 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
41 |
39 40
|
rhmmhm |
|- ( ( ZRHom ` Z ) e. ( ZZring RingHom Z ) -> ( ZRHom ` Z ) e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Z ) ) ) |
42 |
4 33 38 41
|
4syl |
|- ( P e. Prime -> ( ZRHom ` Z ) e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Z ) ) ) |
43 |
42
|
ad3antrrr |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( ZRHom ` Z ) e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Z ) ) ) |
44 |
8 12
|
ressbas2 |
|- ( ZZ C_ CC -> ZZ = ( Base ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) ) |
45 |
9 44
|
ax-mp |
|- ZZ = ( Base ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) |
46 |
|
eqid |
|- ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) = ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) |
47 |
45 46 3
|
mhmmulg |
|- ( ( ( ZRHom ` Z ) e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Z ) ) /\ P e. NN0 /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( P ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) a ) ) = ( P .^ ( ( ZRHom ` Z ) ` a ) ) ) |
48 |
43 6 7 47
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( ( ZRHom ` Z ) ` ( P ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) a ) ) = ( P .^ ( ( ZRHom ` Z ) ` a ) ) ) |
49 |
|
simpr |
|- ( ( P e. Prime /\ a e. ZZ ) -> a e. ZZ ) |
50 |
4
|
adantr |
|- ( ( P e. Prime /\ a e. ZZ ) -> P e. NN ) |
51 |
50
|
nnnn0d |
|- ( ( P e. Prime /\ a e. ZZ ) -> P e. NN0 ) |
52 |
|
zexpcl |
|- ( ( a e. ZZ /\ P e. NN0 ) -> ( a ^ P ) e. ZZ ) |
53 |
49 51 52
|
syl2anc |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( a ^ P ) e. ZZ ) |
54 |
|
eqid |
|- ( -g ` ZZring ) = ( -g ` ZZring ) |
55 |
54
|
zringsubgval |
|- ( ( ( a ^ P ) e. ZZ /\ a e. ZZ ) -> ( ( a ^ P ) - a ) = ( ( a ^ P ) ( -g ` ZZring ) a ) ) |
56 |
53 49 55
|
syl2anc |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( a ^ P ) - a ) = ( ( a ^ P ) ( -g ` ZZring ) a ) ) |
57 |
56
|
fveq2d |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( ( a ^ P ) - a ) ) = ( ( ZRHom ` Z ) ` ( ( a ^ P ) ( -g ` ZZring ) a ) ) ) |
58 |
53
|
zred |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( a ^ P ) e. RR ) |
59 |
|
zre |
|- ( a e. ZZ -> a e. RR ) |
60 |
59
|
adantl |
|- ( ( P e. Prime /\ a e. ZZ ) -> a e. RR ) |
61 |
50
|
nnrpd |
|- ( ( P e. Prime /\ a e. ZZ ) -> P e. RR+ ) |
62 |
|
fermltl |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( a ^ P ) mod P ) = ( a mod P ) ) |
63 |
|
eqidd |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( a mod P ) = ( a mod P ) ) |
64 |
58 60 60 60 61 62 63
|
modsub12d |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ( a ^ P ) - a ) mod P ) = ( ( a - a ) mod P ) ) |
65 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
66 |
65
|
subidd |
|- ( a e. ZZ -> ( a - a ) = 0 ) |
67 |
66
|
adantl |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( a - a ) = 0 ) |
68 |
67
|
oveq1d |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( a - a ) mod P ) = ( 0 mod P ) ) |
69 |
|
0mod |
|- ( P e. RR+ -> ( 0 mod P ) = 0 ) |
70 |
61 69
|
syl |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( 0 mod P ) = 0 ) |
71 |
64 68 70
|
3eqtrd |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ( a ^ P ) - a ) mod P ) = 0 ) |
72 |
53 49
|
zsubcld |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( a ^ P ) - a ) e. ZZ ) |
73 |
|
dvdsval3 |
|- ( ( P e. NN /\ ( ( a ^ P ) - a ) e. ZZ ) -> ( P || ( ( a ^ P ) - a ) <-> ( ( ( a ^ P ) - a ) mod P ) = 0 ) ) |
74 |
50 72 73
|
syl2anc |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( P || ( ( a ^ P ) - a ) <-> ( ( ( a ^ P ) - a ) mod P ) = 0 ) ) |
75 |
71 74
|
mpbird |
|- ( ( P e. Prime /\ a e. ZZ ) -> P || ( ( a ^ P ) - a ) ) |
76 |
|
eqid |
|- ( 0g ` Z ) = ( 0g ` Z ) |
77 |
1 36 76
|
zndvds0 |
|- ( ( P e. NN0 /\ ( ( a ^ P ) - a ) e. ZZ ) -> ( ( ( ZRHom ` Z ) ` ( ( a ^ P ) - a ) ) = ( 0g ` Z ) <-> P || ( ( a ^ P ) - a ) ) ) |
78 |
51 72 77
|
syl2anc |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ( ZRHom ` Z ) ` ( ( a ^ P ) - a ) ) = ( 0g ` Z ) <-> P || ( ( a ^ P ) - a ) ) ) |
79 |
75 78
|
mpbird |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( ( a ^ P ) - a ) ) = ( 0g ` Z ) ) |
80 |
|
rhmghm |
|- ( ( ZRHom ` Z ) e. ( ZZring RingHom Z ) -> ( ZRHom ` Z ) e. ( ZZring GrpHom Z ) ) |
81 |
51 38 80
|
3syl |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ZRHom ` Z ) e. ( ZZring GrpHom Z ) ) |
82 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
83 |
|
eqid |
|- ( -g ` Z ) = ( -g ` Z ) |
84 |
82 54 83
|
ghmsub |
|- ( ( ( ZRHom ` Z ) e. ( ZZring GrpHom Z ) /\ ( a ^ P ) e. ZZ /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( ( a ^ P ) ( -g ` ZZring ) a ) ) = ( ( ( ZRHom ` Z ) ` ( a ^ P ) ) ( -g ` Z ) ( ( ZRHom ` Z ) ` a ) ) ) |
85 |
81 53 49 84
|
syl3anc |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( ( a ^ P ) ( -g ` ZZring ) a ) ) = ( ( ( ZRHom ` Z ) ` ( a ^ P ) ) ( -g ` Z ) ( ( ZRHom ` Z ) ` a ) ) ) |
86 |
57 79 85
|
3eqtr3rd |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ( ZRHom ` Z ) ` ( a ^ P ) ) ( -g ` Z ) ( ( ZRHom ` Z ) ` a ) ) = ( 0g ` Z ) ) |
87 |
4 33 35
|
3syl |
|- ( P e. Prime -> Z e. Ring ) |
88 |
87
|
ringgrpd |
|- ( P e. Prime -> Z e. Grp ) |
89 |
88
|
adantr |
|- ( ( P e. Prime /\ a e. ZZ ) -> Z e. Grp ) |
90 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
91 |
82 90
|
rhmf |
|- ( ( ZRHom ` Z ) e. ( ZZring RingHom Z ) -> ( ZRHom ` Z ) : ZZ --> ( Base ` Z ) ) |
92 |
51 38 91
|
3syl |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ZRHom ` Z ) : ZZ --> ( Base ` Z ) ) |
93 |
92 53
|
ffvelrnd |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( a ^ P ) ) e. ( Base ` Z ) ) |
94 |
92 49
|
ffvelrnd |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` a ) e. ( Base ` Z ) ) |
95 |
90 76 83
|
grpsubeq0 |
|- ( ( Z e. Grp /\ ( ( ZRHom ` Z ) ` ( a ^ P ) ) e. ( Base ` Z ) /\ ( ( ZRHom ` Z ) ` a ) e. ( Base ` Z ) ) -> ( ( ( ( ZRHom ` Z ) ` ( a ^ P ) ) ( -g ` Z ) ( ( ZRHom ` Z ) ` a ) ) = ( 0g ` Z ) <-> ( ( ZRHom ` Z ) ` ( a ^ P ) ) = ( ( ZRHom ` Z ) ` a ) ) ) |
96 |
89 93 94 95
|
syl3anc |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ( ( ZRHom ` Z ) ` ( a ^ P ) ) ( -g ` Z ) ( ( ZRHom ` Z ) ` a ) ) = ( 0g ` Z ) <-> ( ( ZRHom ` Z ) ` ( a ^ P ) ) = ( ( ZRHom ` Z ) ` a ) ) ) |
97 |
86 96
|
mpbid |
|- ( ( P e. Prime /\ a e. ZZ ) -> ( ( ZRHom ` Z ) ` ( a ^ P ) ) = ( ( ZRHom ` Z ) ` a ) ) |
98 |
97
|
ad4ant13 |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( ( ZRHom ` Z ) ` ( a ^ P ) ) = ( ( ZRHom ` Z ) ` a ) ) |
99 |
32 48 98
|
3eqtr3d |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( P .^ ( ( ZRHom ` Z ) ` a ) ) = ( ( ZRHom ` Z ) ` a ) ) |
100 |
|
oveq2 |
|- ( A = ( ( ZRHom ` Z ) ` a ) -> ( P .^ A ) = ( P .^ ( ( ZRHom ` Z ) ` a ) ) ) |
101 |
100
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( P .^ A ) = ( P .^ ( ( ZRHom ` Z ) ` a ) ) ) |
102 |
|
simpr |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> A = ( ( ZRHom ` Z ) ` a ) ) |
103 |
99 101 102
|
3eqtr4d |
|- ( ( ( ( P e. Prime /\ A e. B ) /\ a e. ZZ ) /\ A = ( ( ZRHom ` Z ) ` a ) ) -> ( P .^ A ) = A ) |
104 |
1 2 36
|
znzrhfo |
|- ( P e. NN0 -> ( ZRHom ` Z ) : ZZ -onto-> B ) |
105 |
4 33 104
|
3syl |
|- ( P e. Prime -> ( ZRHom ` Z ) : ZZ -onto-> B ) |
106 |
|
foelrn |
|- ( ( ( ZRHom ` Z ) : ZZ -onto-> B /\ A e. B ) -> E. a e. ZZ A = ( ( ZRHom ` Z ) ` a ) ) |
107 |
105 106
|
sylan |
|- ( ( P e. Prime /\ A e. B ) -> E. a e. ZZ A = ( ( ZRHom ` Z ) ` a ) ) |
108 |
103 107
|
r19.29a |
|- ( ( P e. Prime /\ A e. B ) -> ( P .^ A ) = A ) |