| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmulgnn.1 |
|- H = ( G |`s A ) |
| 2 |
|
ressmulgnn.2 |
|- A C_ ( Base ` G ) |
| 3 |
|
ressmulgnn.3 |
|- .* = ( .g ` G ) |
| 4 |
|
ressmulgnn.4 |
|- I = ( invg ` G ) |
| 5 |
|
ressmulgnn0.4 |
|- ( 0g ` G ) = ( 0g ` H ) |
| 6 |
|
simpr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> N e. NN ) |
| 7 |
|
simplr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> X e. A ) |
| 8 |
1 2 3 4
|
ressmulgnn |
|- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| 10 |
|
simplr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> X e. A ) |
| 11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 12 |
1 11
|
ressbas2 |
|- ( A C_ ( Base ` G ) -> A = ( Base ` H ) ) |
| 13 |
2 12
|
ax-mp |
|- A = ( Base ` H ) |
| 14 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
| 15 |
13 5 14
|
mulg0 |
|- ( X e. A -> ( 0 ( .g ` H ) X ) = ( 0g ` G ) ) |
| 16 |
10 15
|
syl |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( 0 ( .g ` H ) X ) = ( 0g ` G ) ) |
| 17 |
|
simpr |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> N = 0 ) |
| 18 |
17
|
oveq1d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( 0 ( .g ` H ) X ) ) |
| 19 |
2 10
|
sselid |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> X e. ( Base ` G ) ) |
| 20 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 21 |
11 20 3
|
mulg0 |
|- ( X e. ( Base ` G ) -> ( 0 .* X ) = ( 0g ` G ) ) |
| 22 |
19 21
|
syl |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( 0 .* X ) = ( 0g ` G ) ) |
| 23 |
16 18 22
|
3eqtr4d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( 0 .* X ) ) |
| 24 |
17
|
oveq1d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N .* X ) = ( 0 .* X ) ) |
| 25 |
23 24
|
eqtr4d |
|- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| 26 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 27 |
26
|
biimpi |
|- ( N e. NN0 -> ( N e. NN \/ N = 0 ) ) |
| 28 |
27
|
adantr |
|- ( ( N e. NN0 /\ X e. A ) -> ( N e. NN \/ N = 0 ) ) |
| 29 |
9 25 28
|
mpjaodan |
|- ( ( N e. NN0 /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |