Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulgnn.1 |
|- H = ( G |`s A ) |
2 |
|
ressmulgnn.2 |
|- A C_ ( Base ` G ) |
3 |
|
ressmulgnn.3 |
|- .* = ( .g ` G ) |
4 |
|
ressmulgnn.4 |
|- I = ( invg ` G ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
1 5
|
ressbas2 |
|- ( A C_ ( Base ` G ) -> A = ( Base ` H ) ) |
7 |
2 6
|
ax-mp |
|- A = ( Base ` H ) |
8 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
9 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
10 |
|
fvex |
|- ( Base ` G ) e. _V |
11 |
10 2
|
ssexi |
|- A e. _V |
12 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
13 |
1 12
|
ressplusg |
|- ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) |
14 |
11 13
|
ax-mp |
|- ( +g ` G ) = ( +g ` H ) |
15 |
|
seqeq2 |
|- ( ( +g ` G ) = ( +g ` H ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) |
16 |
14 15
|
ax-mp |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
17 |
7 8 9 16
|
mulgnn |
|- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
18 |
|
simpr |
|- ( ( N e. NN /\ X e. A ) -> X e. A ) |
19 |
2 18
|
sselid |
|- ( ( N e. NN /\ X e. A ) -> X e. ( Base ` G ) ) |
20 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
21 |
5 12 3 20
|
mulgnn |
|- ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N .* X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
22 |
19 21
|
syldan |
|- ( ( N e. NN /\ X e. A ) -> ( N .* X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
23 |
17 22
|
eqtr4d |
|- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |