Metamath Proof Explorer


Theorem ressmulgnn

Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017)

Ref Expression
Hypotheses ressmulgnn.1 H = G 𝑠 A
ressmulgnn.2 A Base G
ressmulgnn.3 ˙ = G
ressmulgnn.4 I = inv g G
Assertion ressmulgnn N X A N H X = N ˙ X

Proof

Step Hyp Ref Expression
1 ressmulgnn.1 H = G 𝑠 A
2 ressmulgnn.2 A Base G
3 ressmulgnn.3 ˙ = G
4 ressmulgnn.4 I = inv g G
5 eqid Base G = Base G
6 1 5 ressbas2 A Base G A = Base H
7 2 6 ax-mp A = Base H
8 eqid + H = + H
9 eqid H = H
10 fvex Base G V
11 10 2 ssexi A V
12 eqid + G = + G
13 1 12 ressplusg A V + G = + H
14 11 13 ax-mp + G = + H
15 seqeq2 + G = + H seq 1 + G × X = seq 1 + H × X
16 14 15 ax-mp seq 1 + G × X = seq 1 + H × X
17 7 8 9 16 mulgnn N X A N H X = seq 1 + G × X N
18 simpr N X A X A
19 2 18 sselid N X A X Base G
20 eqid seq 1 + G × X = seq 1 + G × X
21 5 12 3 20 mulgnn N X Base G N ˙ X = seq 1 + G × X N
22 19 21 syldan N X A N ˙ X = seq 1 + G × X N
23 17 22 eqtr4d N X A N H X = N ˙ X