Metamath Proof Explorer


Theorem ressmulgnn

Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017)

Ref Expression
Hypotheses ressmulgnn.1 𝐻 = ( 𝐺s 𝐴 )
ressmulgnn.2 𝐴 ⊆ ( Base ‘ 𝐺 )
ressmulgnn.3 = ( .g𝐺 )
ressmulgnn.4 𝐼 = ( invg𝐺 )
Assertion ressmulgnn ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐴 ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 𝑁 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ressmulgnn.1 𝐻 = ( 𝐺s 𝐴 )
2 ressmulgnn.2 𝐴 ⊆ ( Base ‘ 𝐺 )
3 ressmulgnn.3 = ( .g𝐺 )
4 ressmulgnn.4 𝐼 = ( invg𝐺 )
5 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
6 1 5 ressbas2 ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) )
7 2 6 ax-mp 𝐴 = ( Base ‘ 𝐻 )
8 eqid ( +g𝐻 ) = ( +g𝐻 )
9 eqid ( .g𝐻 ) = ( .g𝐻 )
10 fvex ( Base ‘ 𝐺 ) ∈ V
11 10 2 ssexi 𝐴 ∈ V
12 eqid ( +g𝐺 ) = ( +g𝐺 )
13 1 12 ressplusg ( 𝐴 ∈ V → ( +g𝐺 ) = ( +g𝐻 ) )
14 11 13 ax-mp ( +g𝐺 ) = ( +g𝐻 )
15 seqeq2 ( ( +g𝐺 ) = ( +g𝐻 ) → seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g𝐻 ) , ( ℕ × { 𝑋 } ) ) )
16 14 15 ax-mp seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g𝐻 ) , ( ℕ × { 𝑋 } ) )
17 7 8 9 16 mulgnn ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐴 ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
18 simpr ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐴 ) → 𝑋𝐴 )
19 2 18 sseldi ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐴 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) )
20 eqid seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) )
21 5 12 3 20 mulgnn ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 𝑋 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
22 19 21 syldan ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐴 ) → ( 𝑁 𝑋 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
23 17 22 eqtr4d ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐴 ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 𝑁 𝑋 ) )