| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modadd12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
modadd12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
modadd12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
modadd12d.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
modadd12d.5 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 6 |
|
modadd12d.6 |
⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) |
| 7 |
|
modadd12d.7 |
⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) |
| 8 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝐶 ∈ ℝ ) |
| 9 |
4
|
renegcld |
⊢ ( 𝜑 → - 𝐷 ∈ ℝ ) |
| 10 |
3 4 5 7
|
modnegd |
⊢ ( 𝜑 → ( - 𝐶 mod 𝐸 ) = ( - 𝐷 mod 𝐸 ) ) |
| 11 |
1 2 8 9 5 6 10
|
modadd12d |
⊢ ( 𝜑 → ( ( 𝐴 + - 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + - 𝐷 ) mod 𝐸 ) ) |
| 12 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 |
3
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 14 |
12 13
|
negsubd |
⊢ ( 𝜑 → ( 𝐴 + - 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 + - 𝐶 ) mod 𝐸 ) = ( ( 𝐴 − 𝐶 ) mod 𝐸 ) ) |
| 16 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 17 |
4
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 18 |
16 17
|
negsubd |
⊢ ( 𝜑 → ( 𝐵 + - 𝐷 ) = ( 𝐵 − 𝐷 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 + - 𝐷 ) mod 𝐸 ) = ( ( 𝐵 − 𝐷 ) mod 𝐸 ) ) |
| 20 |
11 15 19
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) mod 𝐸 ) = ( ( 𝐵 − 𝐷 ) mod 𝐸 ) ) |