| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modadd12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
modadd12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
modadd12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
modadd12d.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
modadd12d.5 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 6 |
|
modadd12d.6 |
⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) |
| 7 |
|
modadd12d.7 |
⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) |
| 8 |
|
modadd1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐶 ) mod 𝐸 ) ) |
| 9 |
1 2 3 5 6 8
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐶 ) mod 𝐸 ) ) |
| 10 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 11 |
3
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 12 |
10 11
|
addcomd |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) mod 𝐸 ) = ( ( 𝐶 + 𝐵 ) mod 𝐸 ) ) |
| 14 |
|
modadd1 |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) → ( ( 𝐶 + 𝐵 ) mod 𝐸 ) = ( ( 𝐷 + 𝐵 ) mod 𝐸 ) ) |
| 15 |
3 4 2 5 7 14
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐵 ) mod 𝐸 ) = ( ( 𝐷 + 𝐵 ) mod 𝐸 ) ) |
| 16 |
4
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 17 |
16 10
|
addcomd |
⊢ ( 𝜑 → ( 𝐷 + 𝐵 ) = ( 𝐵 + 𝐷 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐵 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |
| 19 |
13 15 18
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |
| 20 |
9 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) mod 𝐸 ) = ( ( 𝐵 + 𝐷 ) mod 𝐸 ) ) |