| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modadd12d.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
modadd12d.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
modadd12d.3 |
|- ( ph -> C e. RR ) |
| 4 |
|
modadd12d.4 |
|- ( ph -> D e. RR ) |
| 5 |
|
modadd12d.5 |
|- ( ph -> E e. RR+ ) |
| 6 |
|
modadd12d.6 |
|- ( ph -> ( A mod E ) = ( B mod E ) ) |
| 7 |
|
modadd12d.7 |
|- ( ph -> ( C mod E ) = ( D mod E ) ) |
| 8 |
|
modadd1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) |
| 9 |
1 2 3 5 6 8
|
syl221anc |
|- ( ph -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) |
| 10 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 11 |
3
|
recnd |
|- ( ph -> C e. CC ) |
| 12 |
10 11
|
addcomd |
|- ( ph -> ( B + C ) = ( C + B ) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( B + C ) mod E ) = ( ( C + B ) mod E ) ) |
| 14 |
|
modadd1 |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( B e. RR /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) |
| 15 |
3 4 2 5 7 14
|
syl221anc |
|- ( ph -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) |
| 16 |
4
|
recnd |
|- ( ph -> D e. CC ) |
| 17 |
16 10
|
addcomd |
|- ( ph -> ( D + B ) = ( B + D ) ) |
| 18 |
17
|
oveq1d |
|- ( ph -> ( ( D + B ) mod E ) = ( ( B + D ) mod E ) ) |
| 19 |
13 15 18
|
3eqtrd |
|- ( ph -> ( ( B + C ) mod E ) = ( ( B + D ) mod E ) ) |
| 20 |
9 19
|
eqtrd |
|- ( ph -> ( ( A + C ) mod E ) = ( ( B + D ) mod E ) ) |