| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modval |  |-  ( ( A e. RR /\ D e. RR+ ) -> ( A mod D ) = ( A - ( D x. ( |_ ` ( A / D ) ) ) ) ) | 
						
							| 2 |  | modval |  |-  ( ( B e. RR /\ D e. RR+ ) -> ( B mod D ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) | 
						
							| 3 | 1 2 | eqeqan12d |  |-  ( ( ( A e. RR /\ D e. RR+ ) /\ ( B e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) | 
						
							| 4 | 3 | anandirs |  |-  ( ( ( A e. RR /\ B e. RR ) /\ D e. RR+ ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) | 
						
							| 5 | 4 | adantrl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) | 
						
							| 6 |  | oveq1 |  |-  ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) | 
						
							| 7 | 5 6 | biimtrdi |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) ) | 
						
							| 8 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> A e. CC ) | 
						
							| 10 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 11 | 10 | ad2antrl |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> C e. CC ) | 
						
							| 12 |  | rpcn |  |-  ( D e. RR+ -> D e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. RR /\ D e. RR+ ) -> D e. CC ) | 
						
							| 14 |  | rerpdivcl |  |-  ( ( A e. RR /\ D e. RR+ ) -> ( A / D ) e. RR ) | 
						
							| 15 |  | reflcl |  |-  ( ( A / D ) e. RR -> ( |_ ` ( A / D ) ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ( A / D ) e. RR -> ( |_ ` ( A / D ) ) e. CC ) | 
						
							| 17 | 14 16 | syl |  |-  ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. CC ) | 
						
							| 18 | 13 17 | mulcld |  |-  ( ( A e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) | 
						
							| 19 | 18 | adantrl |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) | 
						
							| 20 | 9 11 19 | addsubd |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) ) | 
						
							| 21 | 20 | adantlr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) ) | 
						
							| 22 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 23 | 22 | adantr |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> B e. CC ) | 
						
							| 24 | 10 | ad2antrl |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> C e. CC ) | 
						
							| 25 | 12 | adantl |  |-  ( ( B e. RR /\ D e. RR+ ) -> D e. CC ) | 
						
							| 26 |  | rerpdivcl |  |-  ( ( B e. RR /\ D e. RR+ ) -> ( B / D ) e. RR ) | 
						
							| 27 |  | reflcl |  |-  ( ( B / D ) e. RR -> ( |_ ` ( B / D ) ) e. RR ) | 
						
							| 28 | 27 | recnd |  |-  ( ( B / D ) e. RR -> ( |_ ` ( B / D ) ) e. CC ) | 
						
							| 29 | 26 28 | syl |  |-  ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. CC ) | 
						
							| 30 | 25 29 | mulcld |  |-  ( ( B e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) | 
						
							| 31 | 30 | adantrl |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) | 
						
							| 32 | 23 24 31 | addsubd |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) | 
						
							| 33 | 32 | adantll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) | 
						
							| 34 | 21 33 | eqeq12d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) <-> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) ) | 
						
							| 35 | 7 34 | sylibrd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) | 
						
							| 36 |  | oveq1 |  |-  ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) ) | 
						
							| 37 |  | readdcl |  |-  ( ( A e. RR /\ C e. RR ) -> ( A + C ) e. RR ) | 
						
							| 38 | 37 | adantrr |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( A + C ) e. RR ) | 
						
							| 39 |  | simprr |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> D e. RR+ ) | 
						
							| 40 | 14 | flcld |  |-  ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. ZZ ) | 
						
							| 41 | 40 | adantrl |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( |_ ` ( A / D ) ) e. ZZ ) | 
						
							| 42 |  | modcyc2 |  |-  ( ( ( A + C ) e. RR /\ D e. RR+ /\ ( |_ ` ( A / D ) ) e. ZZ ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( A + C ) mod D ) ) | 
						
							| 43 | 38 39 41 42 | syl3anc |  |-  ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( A + C ) mod D ) ) | 
						
							| 44 | 43 | adantlr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( A + C ) mod D ) ) | 
						
							| 45 |  | readdcl |  |-  ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) | 
						
							| 46 | 45 | adantrr |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( B + C ) e. RR ) | 
						
							| 47 |  | simprr |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> D e. RR+ ) | 
						
							| 48 | 26 | flcld |  |-  ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. ZZ ) | 
						
							| 49 | 48 | adantrl |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( |_ ` ( B / D ) ) e. ZZ ) | 
						
							| 50 |  | modcyc2 |  |-  ( ( ( B + C ) e. RR /\ D e. RR+ /\ ( |_ ` ( B / D ) ) e. ZZ ) -> ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) = ( ( B + C ) mod D ) ) | 
						
							| 51 | 46 47 49 50 | syl3anc |  |-  ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) = ( ( B + C ) mod D ) ) | 
						
							| 52 | 51 | adantll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) = ( ( B + C ) mod D ) ) | 
						
							| 53 | 44 52 | eqeq12d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) <-> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) | 
						
							| 54 | 36 53 | imbitrid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) | 
						
							| 55 | 35 54 | syld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) | 
						
							| 56 | 55 | 3impia |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |