| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modcl |
|- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. RR ) |
| 2 |
1
|
recnd |
|- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) |
| 3 |
2
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) |
| 4 |
|
modcl |
|- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. RR ) |
| 5 |
4
|
recnd |
|- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) |
| 6 |
5
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) |
| 7 |
3 6
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + ( B mod C ) ) = ( ( B mod C ) + ( A mod C ) ) ) |
| 8 |
7
|
oveq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( ( B mod C ) + ( A mod C ) ) mod C ) ) |
| 9 |
|
simpl |
|- ( ( B e. RR /\ C e. RR+ ) -> B e. RR ) |
| 10 |
4 9
|
jca |
|- ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) |
| 11 |
10
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) |
| 12 |
|
simpr |
|- ( ( A e. RR /\ C e. RR+ ) -> C e. RR+ ) |
| 13 |
1 12
|
jca |
|- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) |
| 14 |
13
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) |
| 15 |
|
modabs2 |
|- ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) |
| 16 |
15
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) |
| 17 |
|
modadd1 |
|- ( ( ( ( B mod C ) e. RR /\ B e. RR ) /\ ( ( A mod C ) e. RR /\ C e. RR+ ) /\ ( ( B mod C ) mod C ) = ( B mod C ) ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
| 18 |
11 14 16 17
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
| 19 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 20 |
19
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> B e. CC ) |
| 21 |
3 20
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + B ) = ( B + ( A mod C ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
| 23 |
18 22
|
eqtr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( ( A mod C ) + B ) mod C ) ) |
| 24 |
|
simpl |
|- ( ( A e. RR /\ C e. RR+ ) -> A e. RR ) |
| 25 |
1 24
|
jca |
|- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) |
| 26 |
25
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) |
| 27 |
|
3simpc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B e. RR /\ C e. RR+ ) ) |
| 28 |
|
modabs2 |
|- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) |
| 29 |
28
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) |
| 30 |
|
modadd1 |
|- ( ( ( ( A mod C ) e. RR /\ A e. RR ) /\ ( B e. RR /\ C e. RR+ ) /\ ( ( A mod C ) mod C ) = ( A mod C ) ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) |
| 31 |
26 27 29 30
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) |
| 32 |
8 23 31
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( A + B ) mod C ) ) |