| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1fermltl.z |
|- Z = ( Z/nZ ` P ) |
| 2 |
|
ply1fermltl.w |
|- W = ( Poly1 ` Z ) |
| 3 |
|
ply1fermltl.x |
|- X = ( var1 ` Z ) |
| 4 |
|
ply1fermltl.l |
|- .+ = ( +g ` W ) |
| 5 |
|
ply1fermltl.n |
|- N = ( mulGrp ` W ) |
| 6 |
|
ply1fermltl.t |
|- .^ = ( .g ` N ) |
| 7 |
|
ply1fermltl.c |
|- C = ( algSc ` W ) |
| 8 |
|
ply1fermltl.a |
|- A = ( C ` ( ( ZRHom ` Z ) ` E ) ) |
| 9 |
|
ply1fermltl.p |
|- ( ph -> P e. Prime ) |
| 10 |
|
ply1fermltl.1 |
|- ( ph -> E e. ZZ ) |
| 11 |
|
eqid |
|- ( chr ` Z ) = ( chr ` Z ) |
| 12 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 13 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
| 14 |
1
|
zncrng |
|- ( P e. NN0 -> Z e. CRing ) |
| 15 |
9 12 13 14
|
4syl |
|- ( ph -> Z e. CRing ) |
| 16 |
1
|
znchr |
|- ( P e. NN0 -> ( chr ` Z ) = P ) |
| 17 |
9 12 13 16
|
4syl |
|- ( ph -> ( chr ` Z ) = P ) |
| 18 |
17 9
|
eqeltrd |
|- ( ph -> ( chr ` Z ) e. Prime ) |
| 19 |
2 3 4 5 6 7 8 11 15 18 10
|
ply1fermltlchr |
|- ( ph -> ( ( chr ` Z ) .^ ( X .+ A ) ) = ( ( ( chr ` Z ) .^ X ) .+ A ) ) |
| 20 |
17
|
oveq1d |
|- ( ph -> ( ( chr ` Z ) .^ ( X .+ A ) ) = ( P .^ ( X .+ A ) ) ) |
| 21 |
17
|
oveq1d |
|- ( ph -> ( ( chr ` Z ) .^ X ) = ( P .^ X ) ) |
| 22 |
21
|
oveq1d |
|- ( ph -> ( ( ( chr ` Z ) .^ X ) .+ A ) = ( ( P .^ X ) .+ A ) ) |
| 23 |
19 20 22
|
3eqtr3d |
|- ( ph -> ( P .^ ( X .+ A ) ) = ( ( P .^ X ) .+ A ) ) |