Step |
Hyp |
Ref |
Expression |
1 |
|
ply1fermltl.z |
|- Z = ( Z/nZ ` P ) |
2 |
|
ply1fermltl.w |
|- W = ( Poly1 ` Z ) |
3 |
|
ply1fermltl.x |
|- X = ( var1 ` Z ) |
4 |
|
ply1fermltl.l |
|- .+ = ( +g ` W ) |
5 |
|
ply1fermltl.n |
|- N = ( mulGrp ` W ) |
6 |
|
ply1fermltl.t |
|- .^ = ( .g ` N ) |
7 |
|
ply1fermltl.c |
|- C = ( algSc ` W ) |
8 |
|
ply1fermltl.a |
|- A = ( C ` ( ( ZRHom ` Z ) ` E ) ) |
9 |
|
ply1fermltl.p |
|- ( ph -> P e. Prime ) |
10 |
|
ply1fermltl.1 |
|- ( ph -> E e. ZZ ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
5
|
fveq2i |
|- ( .g ` N ) = ( .g ` ( mulGrp ` W ) ) |
13 |
6 12
|
eqtri |
|- .^ = ( .g ` ( mulGrp ` W ) ) |
14 |
|
eqid |
|- ( chr ` W ) = ( chr ` W ) |
15 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
16 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
17 |
1
|
zncrng |
|- ( P e. NN0 -> Z e. CRing ) |
18 |
9 15 16 17
|
4syl |
|- ( ph -> Z e. CRing ) |
19 |
2
|
ply1crng |
|- ( Z e. CRing -> W e. CRing ) |
20 |
18 19
|
syl |
|- ( ph -> W e. CRing ) |
21 |
2
|
ply1chr |
|- ( Z e. CRing -> ( chr ` W ) = ( chr ` Z ) ) |
22 |
18 21
|
syl |
|- ( ph -> ( chr ` W ) = ( chr ` Z ) ) |
23 |
1
|
znchr |
|- ( P e. NN0 -> ( chr ` Z ) = P ) |
24 |
9 15 16 23
|
4syl |
|- ( ph -> ( chr ` Z ) = P ) |
25 |
22 24
|
eqtrd |
|- ( ph -> ( chr ` W ) = P ) |
26 |
25 9
|
eqeltrd |
|- ( ph -> ( chr ` W ) e. Prime ) |
27 |
18
|
crngringd |
|- ( ph -> Z e. Ring ) |
28 |
3 2 11
|
vr1cl |
|- ( Z e. Ring -> X e. ( Base ` W ) ) |
29 |
27 28
|
syl |
|- ( ph -> X e. ( Base ` W ) ) |
30 |
|
eqid |
|- ( ZRHom ` Z ) = ( ZRHom ` Z ) |
31 |
30
|
zrhrhm |
|- ( Z e. Ring -> ( ZRHom ` Z ) e. ( ZZring RingHom Z ) ) |
32 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
33 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
34 |
32 33
|
rhmf |
|- ( ( ZRHom ` Z ) e. ( ZZring RingHom Z ) -> ( ZRHom ` Z ) : ZZ --> ( Base ` Z ) ) |
35 |
27 31 34
|
3syl |
|- ( ph -> ( ZRHom ` Z ) : ZZ --> ( Base ` Z ) ) |
36 |
35 10
|
ffvelrnd |
|- ( ph -> ( ( ZRHom ` Z ) ` E ) e. ( Base ` Z ) ) |
37 |
2 7 33 11
|
ply1sclcl |
|- ( ( Z e. Ring /\ ( ( ZRHom ` Z ) ` E ) e. ( Base ` Z ) ) -> ( C ` ( ( ZRHom ` Z ) ` E ) ) e. ( Base ` W ) ) |
38 |
27 36 37
|
syl2anc |
|- ( ph -> ( C ` ( ( ZRHom ` Z ) ` E ) ) e. ( Base ` W ) ) |
39 |
8 38
|
eqeltrid |
|- ( ph -> A e. ( Base ` W ) ) |
40 |
11 4 13 14 20 26 29 39
|
freshmansdream |
|- ( ph -> ( ( chr ` W ) .^ ( X .+ A ) ) = ( ( ( chr ` W ) .^ X ) .+ ( ( chr ` W ) .^ A ) ) ) |
41 |
25
|
oveq1d |
|- ( ph -> ( ( chr ` W ) .^ ( X .+ A ) ) = ( P .^ ( X .+ A ) ) ) |
42 |
25
|
oveq1d |
|- ( ph -> ( ( chr ` W ) .^ X ) = ( P .^ X ) ) |
43 |
25
|
oveq1d |
|- ( ph -> ( ( chr ` W ) .^ A ) = ( P .^ A ) ) |
44 |
2
|
ply1assa |
|- ( Z e. CRing -> W e. AssAlg ) |
45 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
46 |
7 45
|
asclrhm |
|- ( W e. AssAlg -> C e. ( ( Scalar ` W ) RingHom W ) ) |
47 |
18 44 46
|
3syl |
|- ( ph -> C e. ( ( Scalar ` W ) RingHom W ) ) |
48 |
18
|
crnggrpd |
|- ( ph -> Z e. Grp ) |
49 |
2
|
ply1sca |
|- ( Z e. Grp -> Z = ( Scalar ` W ) ) |
50 |
48 49
|
syl |
|- ( ph -> Z = ( Scalar ` W ) ) |
51 |
50
|
oveq1d |
|- ( ph -> ( Z RingHom W ) = ( ( Scalar ` W ) RingHom W ) ) |
52 |
47 51
|
eleqtrrd |
|- ( ph -> C e. ( Z RingHom W ) ) |
53 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
54 |
53 5
|
rhmmhm |
|- ( C e. ( Z RingHom W ) -> C e. ( ( mulGrp ` Z ) MndHom N ) ) |
55 |
52 54
|
syl |
|- ( ph -> C e. ( ( mulGrp ` Z ) MndHom N ) ) |
56 |
9 15 16
|
3syl |
|- ( ph -> P e. NN0 ) |
57 |
53 33
|
mgpbas |
|- ( Base ` Z ) = ( Base ` ( mulGrp ` Z ) ) |
58 |
|
eqid |
|- ( .g ` ( mulGrp ` Z ) ) = ( .g ` ( mulGrp ` Z ) ) |
59 |
57 58 6
|
mhmmulg |
|- ( ( C e. ( ( mulGrp ` Z ) MndHom N ) /\ P e. NN0 /\ ( ( ZRHom ` Z ) ` E ) e. ( Base ` Z ) ) -> ( C ` ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) ) = ( P .^ ( C ` ( ( ZRHom ` Z ) ` E ) ) ) ) |
60 |
55 56 36 59
|
syl3anc |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) ) = ( P .^ ( C ` ( ( ZRHom ` Z ) ` E ) ) ) ) |
61 |
8
|
a1i |
|- ( ph -> A = ( C ` ( ( ZRHom ` Z ) ` E ) ) ) |
62 |
61
|
oveq2d |
|- ( ph -> ( P .^ A ) = ( P .^ ( C ` ( ( ZRHom ` Z ) ` E ) ) ) ) |
63 |
60 62
|
eqtr4d |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) ) = ( P .^ A ) ) |
64 |
1 33 58
|
znfermltl |
|- ( ( P e. Prime /\ ( ( ZRHom ` Z ) ` E ) e. ( Base ` Z ) ) -> ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) = ( ( ZRHom ` Z ) ` E ) ) |
65 |
9 36 64
|
syl2anc |
|- ( ph -> ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) = ( ( ZRHom ` Z ) ` E ) ) |
66 |
65
|
fveq2d |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) ) = ( C ` ( ( ZRHom ` Z ) ` E ) ) ) |
67 |
66 8
|
eqtr4di |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` Z ) ) ( ( ZRHom ` Z ) ` E ) ) ) = A ) |
68 |
43 63 67
|
3eqtr2d |
|- ( ph -> ( ( chr ` W ) .^ A ) = A ) |
69 |
42 68
|
oveq12d |
|- ( ph -> ( ( ( chr ` W ) .^ X ) .+ ( ( chr ` W ) .^ A ) ) = ( ( P .^ X ) .+ A ) ) |
70 |
40 41 69
|
3eqtr3d |
|- ( ph -> ( P .^ ( X .+ A ) ) = ( ( P .^ X ) .+ A ) ) |