Step |
Hyp |
Ref |
Expression |
1 |
|
freshmansdream.s |
|- B = ( Base ` R ) |
2 |
|
freshmansdream.a |
|- .+ = ( +g ` R ) |
3 |
|
freshmansdream.p |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
4 |
|
freshmansdream.c |
|- P = ( chr ` R ) |
5 |
|
freshmansdream.r |
|- ( ph -> R e. CRing ) |
6 |
|
freshmansdream.1 |
|- ( ph -> P e. Prime ) |
7 |
|
freshmansdream.x |
|- ( ph -> X e. B ) |
8 |
|
freshmansdream.y |
|- ( ph -> Y e. B ) |
9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
10 |
4
|
chrcl |
|- ( R e. Ring -> P e. NN0 ) |
11 |
5 9 10
|
3syl |
|- ( ph -> P e. NN0 ) |
12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
13 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
14 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
15 |
1 12 13 2 14 3
|
crngbinom |
|- ( ( ( R e. CRing /\ P e. NN0 ) /\ ( X e. B /\ Y e. B ) ) -> ( P .^ ( X .+ Y ) ) = ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) |
16 |
5 11 7 8 15
|
syl22anc |
|- ( ph -> ( P .^ ( X .+ Y ) ) = ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) |
17 |
11
|
nn0cnd |
|- ( ph -> P e. CC ) |
18 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
19 |
17 18
|
npcand |
|- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
20 |
19
|
oveq2d |
|- ( ph -> ( 0 ... ( ( P - 1 ) + 1 ) ) = ( 0 ... P ) ) |
21 |
20
|
eqcomd |
|- ( ph -> ( 0 ... P ) = ( 0 ... ( ( P - 1 ) + 1 ) ) ) |
22 |
21
|
mpteq1d |
|- ( ph -> ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) = ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) |
23 |
22
|
oveq2d |
|- ( ph -> ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) |
24 |
|
ringcmn |
|- ( R e. Ring -> R e. CMnd ) |
25 |
5 9 24
|
3syl |
|- ( ph -> R e. CMnd ) |
26 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
27 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
28 |
6 26 27
|
3syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
29 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
30 |
5 9 29
|
3syl |
|- ( ph -> R e. Grp ) |
31 |
30
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> R e. Grp ) |
32 |
11
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> P e. NN0 ) |
33 |
|
fzssz |
|- ( 0 ... ( ( P - 1 ) + 1 ) ) C_ ZZ |
34 |
33
|
a1i |
|- ( ph -> ( 0 ... ( ( P - 1 ) + 1 ) ) C_ ZZ ) |
35 |
34
|
sselda |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ZZ ) |
36 |
|
bccl |
|- ( ( P e. NN0 /\ i e. ZZ ) -> ( P _C i ) e. NN0 ) |
37 |
32 35 36
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P _C i ) e. NN0 ) |
38 |
37
|
nn0zd |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P _C i ) e. ZZ ) |
39 |
5 9
|
syl |
|- ( ph -> R e. Ring ) |
40 |
39
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> R e. Ring ) |
41 |
14
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
42 |
39 41
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
43 |
42
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) |
44 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) |
45 |
20
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( 0 ... ( ( P - 1 ) + 1 ) ) = ( 0 ... P ) ) |
46 |
44 45
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ( 0 ... P ) ) |
47 |
|
fznn0sub |
|- ( i e. ( 0 ... P ) -> ( P - i ) e. NN0 ) |
48 |
46 47
|
syl |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P - i ) e. NN0 ) |
49 |
7
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> X e. B ) |
50 |
14 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
51 |
50 3
|
mulgnn0cl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ ( P - i ) e. NN0 /\ X e. B ) -> ( ( P - i ) .^ X ) e. B ) |
52 |
43 48 49 51
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) |
53 |
|
elfznn0 |
|- ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) -> i e. NN0 ) |
54 |
53
|
adantl |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. NN0 ) |
55 |
8
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> Y e. B ) |
56 |
50 3
|
mulgnn0cl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ i e. NN0 /\ Y e. B ) -> ( i .^ Y ) e. B ) |
57 |
43 54 55 56
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( i .^ Y ) e. B ) |
58 |
1 12
|
ringcl |
|- ( ( R e. Ring /\ ( ( P - i ) .^ X ) e. B /\ ( i .^ Y ) e. B ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
59 |
40 52 57 58
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
60 |
1 13
|
mulgcl |
|- ( ( R e. Grp /\ ( P _C i ) e. ZZ /\ ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) |
61 |
31 38 59 60
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) |
62 |
1 2 25 28 61
|
gsummptfzsplit |
|- ( ph -> ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) ) |
63 |
30
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> R e. Grp ) |
64 |
|
elfzelz |
|- ( i e. ( 0 ... ( P - 1 ) ) -> i e. ZZ ) |
65 |
11 64 36
|
syl2an |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P _C i ) e. NN0 ) |
66 |
65
|
nn0zd |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P _C i ) e. ZZ ) |
67 |
39
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> R e. Ring ) |
68 |
67 41
|
syl |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) |
69 |
|
fzssp1 |
|- ( 0 ... ( P - 1 ) ) C_ ( 0 ... ( ( P - 1 ) + 1 ) ) |
70 |
69 20
|
sseqtrid |
|- ( ph -> ( 0 ... ( P - 1 ) ) C_ ( 0 ... P ) ) |
71 |
70
|
sselda |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> i e. ( 0 ... P ) ) |
72 |
71 47
|
syl |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P - i ) e. NN0 ) |
73 |
7
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> X e. B ) |
74 |
68 72 73 51
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) |
75 |
|
elfznn0 |
|- ( i e. ( 0 ... ( P - 1 ) ) -> i e. NN0 ) |
76 |
75
|
adantl |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> i e. NN0 ) |
77 |
8
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> Y e. B ) |
78 |
68 76 77 56
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( i .^ Y ) e. B ) |
79 |
67 74 78 58
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
80 |
63 66 79 60
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) |
81 |
1 2 25 28 80
|
gsummptfzsplitl |
|- ( ph -> ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) ) |
82 |
39
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> R e. Ring ) |
83 |
|
prmdvdsbc |
|- ( ( P e. Prime /\ i e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C i ) ) |
84 |
6 83
|
sylan |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C i ) ) |
85 |
82 41
|
syl |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) |
86 |
11
|
nn0zd |
|- ( ph -> P e. ZZ ) |
87 |
|
1nn0 |
|- 1 e. NN0 |
88 |
|
eluzmn |
|- ( ( P e. ZZ /\ 1 e. NN0 ) -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
89 |
86 87 88
|
sylancl |
|- ( ph -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
90 |
|
fzss2 |
|- ( P e. ( ZZ>= ` ( P - 1 ) ) -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
91 |
89 90
|
syl |
|- ( ph -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
92 |
91
|
sselda |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> i e. ( 1 ... P ) ) |
93 |
|
fznn0sub |
|- ( i e. ( 1 ... P ) -> ( P - i ) e. NN0 ) |
94 |
92 93
|
syl |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( P - i ) e. NN0 ) |
95 |
7
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> X e. B ) |
96 |
85 94 95 51
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) |
97 |
|
elfznn |
|- ( i e. ( 1 ... ( P - 1 ) ) -> i e. NN ) |
98 |
97
|
nnnn0d |
|- ( i e. ( 1 ... ( P - 1 ) ) -> i e. NN0 ) |
99 |
98
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> i e. NN0 ) |
100 |
8
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> Y e. B ) |
101 |
85 99 100 56
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( i .^ Y ) e. B ) |
102 |
82 96 101 58
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
103 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
104 |
4 1 13 103
|
dvdschrmulg |
|- ( ( R e. Ring /\ P || ( P _C i ) /\ ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( 0g ` R ) ) |
105 |
82 84 102 104
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( 0g ` R ) ) |
106 |
105
|
mpteq2dva |
|- ( ph -> ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) = ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) |
107 |
106
|
oveq2d |
|- ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) ) |
108 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
109 |
39 108
|
syl |
|- ( ph -> R e. Mnd ) |
110 |
|
ovex |
|- ( 1 ... ( P - 1 ) ) e. _V |
111 |
103
|
gsumz |
|- ( ( R e. Mnd /\ ( 1 ... ( P - 1 ) ) e. _V ) -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
112 |
109 110 111
|
sylancl |
|- ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
113 |
107 112
|
eqtrd |
|- ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( 0g ` R ) ) |
114 |
|
0nn0 |
|- 0 e. NN0 |
115 |
114
|
a1i |
|- ( ph -> 0 e. NN0 ) |
116 |
50 3
|
mulgnn0cl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 /\ X e. B ) -> ( P .^ X ) e. B ) |
117 |
42 11 7 116
|
syl3anc |
|- ( ph -> ( P .^ X ) e. B ) |
118 |
|
simpr |
|- ( ( ph /\ i = 0 ) -> i = 0 ) |
119 |
118
|
oveq2d |
|- ( ( ph /\ i = 0 ) -> ( P _C i ) = ( P _C 0 ) ) |
120 |
118
|
oveq2d |
|- ( ( ph /\ i = 0 ) -> ( P - i ) = ( P - 0 ) ) |
121 |
120
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( ( P - i ) .^ X ) = ( ( P - 0 ) .^ X ) ) |
122 |
118
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( i .^ Y ) = ( 0 .^ Y ) ) |
123 |
121 122
|
oveq12d |
|- ( ( ph /\ i = 0 ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) = ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) |
124 |
119 123
|
oveq12d |
|- ( ( ph /\ i = 0 ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) ) |
125 |
|
bcn0 |
|- ( P e. NN0 -> ( P _C 0 ) = 1 ) |
126 |
11 125
|
syl |
|- ( ph -> ( P _C 0 ) = 1 ) |
127 |
17
|
subid1d |
|- ( ph -> ( P - 0 ) = P ) |
128 |
127
|
oveq1d |
|- ( ph -> ( ( P - 0 ) .^ X ) = ( P .^ X ) ) |
129 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
130 |
14 129
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
131 |
50 130 3
|
mulg0 |
|- ( Y e. B -> ( 0 .^ Y ) = ( 1r ` R ) ) |
132 |
8 131
|
syl |
|- ( ph -> ( 0 .^ Y ) = ( 1r ` R ) ) |
133 |
128 132
|
oveq12d |
|- ( ph -> ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) = ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) ) |
134 |
1 12 129
|
ringridm |
|- ( ( R e. Ring /\ ( P .^ X ) e. B ) -> ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) = ( P .^ X ) ) |
135 |
39 117 134
|
syl2anc |
|- ( ph -> ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) = ( P .^ X ) ) |
136 |
133 135
|
eqtrd |
|- ( ph -> ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) = ( P .^ X ) ) |
137 |
126 136
|
oveq12d |
|- ( ph -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( 1 ( .g ` R ) ( P .^ X ) ) ) |
138 |
1 13
|
mulg1 |
|- ( ( P .^ X ) e. B -> ( 1 ( .g ` R ) ( P .^ X ) ) = ( P .^ X ) ) |
139 |
117 138
|
syl |
|- ( ph -> ( 1 ( .g ` R ) ( P .^ X ) ) = ( P .^ X ) ) |
140 |
137 139
|
eqtrd |
|- ( ph -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( P .^ X ) ) |
141 |
140
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( P .^ X ) ) |
142 |
124 141
|
eqtrd |
|- ( ( ph /\ i = 0 ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( P .^ X ) ) |
143 |
1 109 115 117 142
|
gsumsnd |
|- ( ph -> ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ X ) ) |
144 |
113 143
|
oveq12d |
|- ( ph -> ( ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) = ( ( 0g ` R ) .+ ( P .^ X ) ) ) |
145 |
1 2 103
|
grplid |
|- ( ( R e. Grp /\ ( P .^ X ) e. B ) -> ( ( 0g ` R ) .+ ( P .^ X ) ) = ( P .^ X ) ) |
146 |
30 117 145
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) .+ ( P .^ X ) ) = ( P .^ X ) ) |
147 |
81 144 146
|
3eqtrd |
|- ( ph -> ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ X ) ) |
148 |
19 11
|
eqeltrd |
|- ( ph -> ( ( P - 1 ) + 1 ) e. NN0 ) |
149 |
50 3
|
mulgnn0cl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 /\ Y e. B ) -> ( P .^ Y ) e. B ) |
150 |
42 11 8 149
|
syl3anc |
|- ( ph -> ( P .^ Y ) e. B ) |
151 |
|
simpr |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> i = ( ( P - 1 ) + 1 ) ) |
152 |
19
|
adantr |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P - 1 ) + 1 ) = P ) |
153 |
151 152
|
eqtrd |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> i = P ) |
154 |
153
|
oveq2d |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( P _C i ) = ( P _C P ) ) |
155 |
153
|
oveq2d |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( P - i ) = ( P - P ) ) |
156 |
155
|
oveq1d |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P - i ) .^ X ) = ( ( P - P ) .^ X ) ) |
157 |
153
|
oveq1d |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( i .^ Y ) = ( P .^ Y ) ) |
158 |
156 157
|
oveq12d |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) = ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) |
159 |
154 158
|
oveq12d |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) ) |
160 |
|
bcnn |
|- ( P e. NN0 -> ( P _C P ) = 1 ) |
161 |
11 160
|
syl |
|- ( ph -> ( P _C P ) = 1 ) |
162 |
17
|
subidd |
|- ( ph -> ( P - P ) = 0 ) |
163 |
162
|
oveq1d |
|- ( ph -> ( ( P - P ) .^ X ) = ( 0 .^ X ) ) |
164 |
50 130 3
|
mulg0 |
|- ( X e. B -> ( 0 .^ X ) = ( 1r ` R ) ) |
165 |
7 164
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
166 |
163 165
|
eqtrd |
|- ( ph -> ( ( P - P ) .^ X ) = ( 1r ` R ) ) |
167 |
166
|
oveq1d |
|- ( ph -> ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) = ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) ) |
168 |
1 12 129
|
ringlidm |
|- ( ( R e. Ring /\ ( P .^ Y ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
169 |
39 150 168
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
170 |
167 169
|
eqtrd |
|- ( ph -> ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
171 |
161 170
|
oveq12d |
|- ( ph -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( 1 ( .g ` R ) ( P .^ Y ) ) ) |
172 |
1 13
|
mulg1 |
|- ( ( P .^ Y ) e. B -> ( 1 ( .g ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
173 |
150 172
|
syl |
|- ( ph -> ( 1 ( .g ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
174 |
171 173
|
eqtrd |
|- ( ph -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( P .^ Y ) ) |
175 |
174
|
adantr |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( P .^ Y ) ) |
176 |
159 175
|
eqtrd |
|- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( P .^ Y ) ) |
177 |
1 109 148 150 176
|
gsumsnd |
|- ( ph -> ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ Y ) ) |
178 |
147 177
|
oveq12d |
|- ( ph -> ( ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |
179 |
62 178
|
eqtrd |
|- ( ph -> ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |
180 |
16 23 179
|
3eqtrd |
|- ( ph -> ( P .^ ( X .+ Y ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |