| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfzsplit.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfzsplit.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsummptfzsplit.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptfzsplit.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
gsummptfzsplit.y |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> Y e. B ) |
| 6 |
|
fzfid |
|- ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) |
| 7 |
|
fzp1disj |
|- ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) |
| 8 |
7
|
a1i |
|- ( ph -> ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) ) |
| 9 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
| 10 |
4 9
|
sylib |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 11 |
|
fzsuc |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... ( N + 1 ) ) = ( ( 0 ... N ) u. { ( N + 1 ) } ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( 0 ... ( N + 1 ) ) = ( ( 0 ... N ) u. { ( N + 1 ) } ) ) |
| 13 |
1 2 3 6 5 8 12
|
gsummptfidmsplit |
|- ( ph -> ( G gsum ( k e. ( 0 ... ( N + 1 ) ) |-> Y ) ) = ( ( G gsum ( k e. ( 0 ... N ) |-> Y ) ) .+ ( G gsum ( k e. { ( N + 1 ) } |-> Y ) ) ) ) |