Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) |
2 |
|
simpl |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) |
3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
4 |
3
|
nnzd |
|- ( P e. Prime -> P e. ZZ ) |
5 |
|
1nn0 |
|- 1 e. NN0 |
6 |
|
eluzmn |
|- ( ( P e. ZZ /\ 1 e. NN0 ) -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
7 |
4 5 6
|
sylancl |
|- ( P e. Prime -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
8 |
|
fzss2 |
|- ( P e. ( ZZ>= ` ( P - 1 ) ) -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
9 |
7 8
|
syl |
|- ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
10 |
|
fz1ssfz0 |
|- ( 1 ... P ) C_ ( 0 ... P ) |
11 |
9 10
|
sstrdi |
|- ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... P ) ) |
12 |
11
|
sselda |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ( 0 ... P ) ) |
13 |
|
bcval2 |
|- ( N e. ( 0 ... P ) -> ( P _C N ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
15 |
3
|
nnnn0d |
|- ( P e. Prime -> P e. NN0 ) |
16 |
15
|
adantr |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. NN0 ) |
17 |
|
elfzelz |
|- ( N e. ( 1 ... ( P - 1 ) ) -> N e. ZZ ) |
18 |
17
|
adantl |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ZZ ) |
19 |
|
bccl |
|- ( ( P e. NN0 /\ N e. ZZ ) -> ( P _C N ) e. NN0 ) |
20 |
16 18 19
|
syl2anc |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) e. NN0 ) |
21 |
20
|
nn0zd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) e. ZZ ) |
22 |
14 21
|
eqeltrrd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) e. ZZ ) |
23 |
|
elfznn |
|- ( N e. ( 1 ... ( P - 1 ) ) -> N e. NN ) |
24 |
23
|
adantl |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. NN ) |
25 |
24
|
nnnn0d |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. NN0 ) |
26 |
|
1zzd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> 1 e. ZZ ) |
27 |
4
|
adantr |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. ZZ ) |
28 |
|
simpr |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ( 1 ... ( P - 1 ) ) ) |
29 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( N e. ( 1 ... ( P - 1 ) ) <-> ( N e. ZZ /\ 1 <_ N /\ N < P ) ) ) |
30 |
29
|
biimpa |
|- ( ( ( 1 e. ZZ /\ P e. ZZ ) /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( N e. ZZ /\ 1 <_ N /\ N < P ) ) |
31 |
30
|
simp3d |
|- ( ( ( 1 e. ZZ /\ P e. ZZ ) /\ N e. ( 1 ... ( P - 1 ) ) ) -> N < P ) |
32 |
26 27 28 31
|
syl21anc |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N < P ) |
33 |
|
ltsubnn0 |
|- ( ( P e. NN0 /\ N e. NN0 ) -> ( N < P -> ( P - N ) e. NN0 ) ) |
34 |
33
|
imp |
|- ( ( ( P e. NN0 /\ N e. NN0 ) /\ N < P ) -> ( P - N ) e. NN0 ) |
35 |
16 25 32 34
|
syl21anc |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P - N ) e. NN0 ) |
36 |
35
|
faccld |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. NN ) |
37 |
36
|
nnzd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. ZZ ) |
38 |
25
|
faccld |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. NN ) |
39 |
38
|
nnzd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. ZZ ) |
40 |
37 39
|
zmulcld |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) e. ZZ ) |
41 |
37
|
zcnd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. CC ) |
42 |
39
|
zcnd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. CC ) |
43 |
|
facne0 |
|- ( ( P - N ) e. NN0 -> ( ! ` ( P - N ) ) =/= 0 ) |
44 |
35 43
|
syl |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) =/= 0 ) |
45 |
|
facne0 |
|- ( N e. NN0 -> ( ! ` N ) =/= 0 ) |
46 |
25 45
|
syl |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) =/= 0 ) |
47 |
41 42 44 46
|
mulne0d |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) =/= 0 ) |
48 |
|
uzid |
|- ( P e. ZZ -> P e. ( ZZ>= ` P ) ) |
49 |
4 48
|
syl |
|- ( P e. Prime -> P e. ( ZZ>= ` P ) ) |
50 |
|
dvdsfac |
|- ( ( P e. NN /\ P e. ( ZZ>= ` P ) ) -> P || ( ! ` P ) ) |
51 |
3 49 50
|
syl2anc |
|- ( P e. Prime -> P || ( ! ` P ) ) |
52 |
51
|
adantr |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( ! ` P ) ) |
53 |
16
|
nn0red |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. RR ) |
54 |
24
|
nnrpd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. RR+ ) |
55 |
53 54
|
ltsubrpd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P - N ) < P ) |
56 |
|
prmndvdsfaclt |
|- ( ( P e. Prime /\ ( P - N ) e. NN0 ) -> ( ( P - N ) < P -> -. P || ( ! ` ( P - N ) ) ) ) |
57 |
56
|
imp |
|- ( ( ( P e. Prime /\ ( P - N ) e. NN0 ) /\ ( P - N ) < P ) -> -. P || ( ! ` ( P - N ) ) ) |
58 |
2 35 55 57
|
syl21anc |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ! ` ( P - N ) ) ) |
59 |
|
prmndvdsfaclt |
|- ( ( P e. Prime /\ N e. NN0 ) -> ( N < P -> -. P || ( ! ` N ) ) ) |
60 |
59
|
imp |
|- ( ( ( P e. Prime /\ N e. NN0 ) /\ N < P ) -> -. P || ( ! ` N ) ) |
61 |
2 25 32 60
|
syl21anc |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ! ` N ) ) |
62 |
|
ioran |
|- ( -. ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) <-> ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) ) |
63 |
|
euclemma |
|- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) <-> ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) ) ) |
64 |
63
|
biimpd |
|- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) -> ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) ) ) |
65 |
64
|
con3d |
|- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( -. ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
66 |
62 65
|
syl5bir |
|- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
67 |
66
|
imp |
|- ( ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) /\ ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) |
68 |
2 37 39 58 61 67
|
syl32anc |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) |
69 |
1 2 22 40 47 52 68
|
dvdszzq |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
70 |
69 14
|
breqtrrd |
|- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C N ) ) |