| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qnegcl |  |-  ( Q e. QQ -> -u Q e. QQ ) | 
						
							| 2 |  | qnumcl |  |-  ( Q e. QQ -> ( numer ` Q ) e. ZZ ) | 
						
							| 3 | 2 | znegcld |  |-  ( Q e. QQ -> -u ( numer ` Q ) e. ZZ ) | 
						
							| 4 |  | qdencl |  |-  ( Q e. QQ -> ( denom ` Q ) e. NN ) | 
						
							| 5 | 4 | nnzd |  |-  ( Q e. QQ -> ( denom ` Q ) e. ZZ ) | 
						
							| 6 |  | neggcd |  |-  ( ( ( numer ` Q ) e. ZZ /\ ( denom ` Q ) e. ZZ ) -> ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = ( ( numer ` Q ) gcd ( denom ` Q ) ) ) | 
						
							| 7 | 2 5 6 | syl2anc |  |-  ( Q e. QQ -> ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = ( ( numer ` Q ) gcd ( denom ` Q ) ) ) | 
						
							| 8 |  | qnumdencoprm |  |-  ( Q e. QQ -> ( ( numer ` Q ) gcd ( denom ` Q ) ) = 1 ) | 
						
							| 9 | 7 8 | eqtrd |  |-  ( Q e. QQ -> ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = 1 ) | 
						
							| 10 |  | qeqnumdivden |  |-  ( Q e. QQ -> Q = ( ( numer ` Q ) / ( denom ` Q ) ) ) | 
						
							| 11 | 10 | negeqd |  |-  ( Q e. QQ -> -u Q = -u ( ( numer ` Q ) / ( denom ` Q ) ) ) | 
						
							| 12 | 2 | zcnd |  |-  ( Q e. QQ -> ( numer ` Q ) e. CC ) | 
						
							| 13 | 4 | nncnd |  |-  ( Q e. QQ -> ( denom ` Q ) e. CC ) | 
						
							| 14 | 4 | nnne0d |  |-  ( Q e. QQ -> ( denom ` Q ) =/= 0 ) | 
						
							| 15 | 12 13 14 | divnegd |  |-  ( Q e. QQ -> -u ( ( numer ` Q ) / ( denom ` Q ) ) = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) | 
						
							| 16 | 11 15 | eqtrd |  |-  ( Q e. QQ -> -u Q = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) | 
						
							| 17 |  | qnumdenbi |  |-  ( ( -u Q e. QQ /\ -u ( numer ` Q ) e. ZZ /\ ( denom ` Q ) e. NN ) -> ( ( ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = 1 /\ -u Q = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) <-> ( ( numer ` -u Q ) = -u ( numer ` Q ) /\ ( denom ` -u Q ) = ( denom ` Q ) ) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( ( -u Q e. QQ /\ -u ( numer ` Q ) e. ZZ /\ ( denom ` Q ) e. NN ) /\ ( ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = 1 /\ -u Q = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) ) -> ( ( numer ` -u Q ) = -u ( numer ` Q ) /\ ( denom ` -u Q ) = ( denom ` Q ) ) ) | 
						
							| 19 | 1 3 4 9 16 18 | syl32anc |  |-  ( Q e. QQ -> ( ( numer ` -u Q ) = -u ( numer ` Q ) /\ ( denom ` -u Q ) = ( denom ` Q ) ) ) |