| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qnegcl |
|- ( Q e. QQ -> -u Q e. QQ ) |
| 2 |
|
qnumcl |
|- ( Q e. QQ -> ( numer ` Q ) e. ZZ ) |
| 3 |
2
|
znegcld |
|- ( Q e. QQ -> -u ( numer ` Q ) e. ZZ ) |
| 4 |
|
qdencl |
|- ( Q e. QQ -> ( denom ` Q ) e. NN ) |
| 5 |
4
|
nnzd |
|- ( Q e. QQ -> ( denom ` Q ) e. ZZ ) |
| 6 |
|
neggcd |
|- ( ( ( numer ` Q ) e. ZZ /\ ( denom ` Q ) e. ZZ ) -> ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = ( ( numer ` Q ) gcd ( denom ` Q ) ) ) |
| 7 |
2 5 6
|
syl2anc |
|- ( Q e. QQ -> ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = ( ( numer ` Q ) gcd ( denom ` Q ) ) ) |
| 8 |
|
qnumdencoprm |
|- ( Q e. QQ -> ( ( numer ` Q ) gcd ( denom ` Q ) ) = 1 ) |
| 9 |
7 8
|
eqtrd |
|- ( Q e. QQ -> ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = 1 ) |
| 10 |
|
qeqnumdivden |
|- ( Q e. QQ -> Q = ( ( numer ` Q ) / ( denom ` Q ) ) ) |
| 11 |
10
|
negeqd |
|- ( Q e. QQ -> -u Q = -u ( ( numer ` Q ) / ( denom ` Q ) ) ) |
| 12 |
2
|
zcnd |
|- ( Q e. QQ -> ( numer ` Q ) e. CC ) |
| 13 |
4
|
nncnd |
|- ( Q e. QQ -> ( denom ` Q ) e. CC ) |
| 14 |
4
|
nnne0d |
|- ( Q e. QQ -> ( denom ` Q ) =/= 0 ) |
| 15 |
12 13 14
|
divnegd |
|- ( Q e. QQ -> -u ( ( numer ` Q ) / ( denom ` Q ) ) = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) |
| 16 |
11 15
|
eqtrd |
|- ( Q e. QQ -> -u Q = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) |
| 17 |
|
qnumdenbi |
|- ( ( -u Q e. QQ /\ -u ( numer ` Q ) e. ZZ /\ ( denom ` Q ) e. NN ) -> ( ( ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = 1 /\ -u Q = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) <-> ( ( numer ` -u Q ) = -u ( numer ` Q ) /\ ( denom ` -u Q ) = ( denom ` Q ) ) ) ) |
| 18 |
17
|
biimpa |
|- ( ( ( -u Q e. QQ /\ -u ( numer ` Q ) e. ZZ /\ ( denom ` Q ) e. NN ) /\ ( ( -u ( numer ` Q ) gcd ( denom ` Q ) ) = 1 /\ -u Q = ( -u ( numer ` Q ) / ( denom ` Q ) ) ) ) -> ( ( numer ` -u Q ) = -u ( numer ` Q ) /\ ( denom ` -u Q ) = ( denom ` Q ) ) ) |
| 19 |
1 3 4 9 16 18
|
syl32anc |
|- ( Q e. QQ -> ( ( numer ` -u Q ) = -u ( numer ` Q ) /\ ( denom ` -u Q ) = ( denom ` Q ) ) ) |