Metamath Proof Explorer


Theorem numdenneg

Description: Numerator and denominator of the negative. (Contributed by Thierry Arnoux, 27-Oct-2017)

Ref Expression
Assertion numdenneg Q numer Q = numer Q denom Q = denom Q

Proof

Step Hyp Ref Expression
1 qnegcl Q Q
2 qnumcl Q numer Q
3 2 znegcld Q numer Q
4 qdencl Q denom Q
5 4 nnzd Q denom Q
6 neggcd numer Q denom Q numer Q gcd denom Q = numer Q gcd denom Q
7 2 5 6 syl2anc Q numer Q gcd denom Q = numer Q gcd denom Q
8 qnumdencoprm Q numer Q gcd denom Q = 1
9 7 8 eqtrd Q numer Q gcd denom Q = 1
10 qeqnumdivden Q Q = numer Q denom Q
11 10 negeqd Q Q = numer Q denom Q
12 2 zcnd Q numer Q
13 4 nncnd Q denom Q
14 4 nnne0d Q denom Q 0
15 12 13 14 divnegd Q numer Q denom Q = numer Q denom Q
16 11 15 eqtrd Q Q = numer Q denom Q
17 qnumdenbi Q numer Q denom Q numer Q gcd denom Q = 1 Q = numer Q denom Q numer Q = numer Q denom Q = denom Q
18 17 biimpa Q numer Q denom Q numer Q gcd denom Q = 1 Q = numer Q denom Q numer Q = numer Q denom Q = denom Q
19 1 3 4 9 16 18 syl32anc Q numer Q = numer Q denom Q = denom Q