| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qnegcl |
⊢ ( 𝑄 ∈ ℚ → - 𝑄 ∈ ℚ ) |
| 2 |
|
qnumcl |
⊢ ( 𝑄 ∈ ℚ → ( numer ‘ 𝑄 ) ∈ ℤ ) |
| 3 |
2
|
znegcld |
⊢ ( 𝑄 ∈ ℚ → - ( numer ‘ 𝑄 ) ∈ ℤ ) |
| 4 |
|
qdencl |
⊢ ( 𝑄 ∈ ℚ → ( denom ‘ 𝑄 ) ∈ ℕ ) |
| 5 |
4
|
nnzd |
⊢ ( 𝑄 ∈ ℚ → ( denom ‘ 𝑄 ) ∈ ℤ ) |
| 6 |
|
neggcd |
⊢ ( ( ( numer ‘ 𝑄 ) ∈ ℤ ∧ ( denom ‘ 𝑄 ) ∈ ℤ ) → ( - ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) = ( ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) ) |
| 7 |
2 5 6
|
syl2anc |
⊢ ( 𝑄 ∈ ℚ → ( - ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) = ( ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) ) |
| 8 |
|
qnumdencoprm |
⊢ ( 𝑄 ∈ ℚ → ( ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) = 1 ) |
| 9 |
7 8
|
eqtrd |
⊢ ( 𝑄 ∈ ℚ → ( - ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) = 1 ) |
| 10 |
|
qeqnumdivden |
⊢ ( 𝑄 ∈ ℚ → 𝑄 = ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) |
| 11 |
10
|
negeqd |
⊢ ( 𝑄 ∈ ℚ → - 𝑄 = - ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) |
| 12 |
2
|
zcnd |
⊢ ( 𝑄 ∈ ℚ → ( numer ‘ 𝑄 ) ∈ ℂ ) |
| 13 |
4
|
nncnd |
⊢ ( 𝑄 ∈ ℚ → ( denom ‘ 𝑄 ) ∈ ℂ ) |
| 14 |
4
|
nnne0d |
⊢ ( 𝑄 ∈ ℚ → ( denom ‘ 𝑄 ) ≠ 0 ) |
| 15 |
12 13 14
|
divnegd |
⊢ ( 𝑄 ∈ ℚ → - ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) = ( - ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) |
| 16 |
11 15
|
eqtrd |
⊢ ( 𝑄 ∈ ℚ → - 𝑄 = ( - ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) |
| 17 |
|
qnumdenbi |
⊢ ( ( - 𝑄 ∈ ℚ ∧ - ( numer ‘ 𝑄 ) ∈ ℤ ∧ ( denom ‘ 𝑄 ) ∈ ℕ ) → ( ( ( - ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) = 1 ∧ - 𝑄 = ( - ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) ↔ ( ( numer ‘ - 𝑄 ) = - ( numer ‘ 𝑄 ) ∧ ( denom ‘ - 𝑄 ) = ( denom ‘ 𝑄 ) ) ) ) |
| 18 |
17
|
biimpa |
⊢ ( ( ( - 𝑄 ∈ ℚ ∧ - ( numer ‘ 𝑄 ) ∈ ℤ ∧ ( denom ‘ 𝑄 ) ∈ ℕ ) ∧ ( ( - ( numer ‘ 𝑄 ) gcd ( denom ‘ 𝑄 ) ) = 1 ∧ - 𝑄 = ( - ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) ) → ( ( numer ‘ - 𝑄 ) = - ( numer ‘ 𝑄 ) ∧ ( denom ‘ - 𝑄 ) = ( denom ‘ 𝑄 ) ) ) |
| 19 |
1 3 4 9 16 18
|
syl32anc |
⊢ ( 𝑄 ∈ ℚ → ( ( numer ‘ - 𝑄 ) = - ( numer ‘ 𝑄 ) ∧ ( denom ‘ - 𝑄 ) = ( denom ‘ 𝑄 ) ) ) |