| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qnegcl | ⊢ ( 𝑄  ∈  ℚ  →  - 𝑄  ∈  ℚ ) | 
						
							| 2 |  | qnumcl | ⊢ ( 𝑄  ∈  ℚ  →  ( numer ‘ 𝑄 )  ∈  ℤ ) | 
						
							| 3 | 2 | znegcld | ⊢ ( 𝑄  ∈  ℚ  →  - ( numer ‘ 𝑄 )  ∈  ℤ ) | 
						
							| 4 |  | qdencl | ⊢ ( 𝑄  ∈  ℚ  →  ( denom ‘ 𝑄 )  ∈  ℕ ) | 
						
							| 5 | 4 | nnzd | ⊢ ( 𝑄  ∈  ℚ  →  ( denom ‘ 𝑄 )  ∈  ℤ ) | 
						
							| 6 |  | neggcd | ⊢ ( ( ( numer ‘ 𝑄 )  ∈  ℤ  ∧  ( denom ‘ 𝑄 )  ∈  ℤ )  →  ( - ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) )  =  ( ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) ) ) | 
						
							| 7 | 2 5 6 | syl2anc | ⊢ ( 𝑄  ∈  ℚ  →  ( - ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) )  =  ( ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) ) ) | 
						
							| 8 |  | qnumdencoprm | ⊢ ( 𝑄  ∈  ℚ  →  ( ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) )  =  1 ) | 
						
							| 9 | 7 8 | eqtrd | ⊢ ( 𝑄  ∈  ℚ  →  ( - ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) )  =  1 ) | 
						
							| 10 |  | qeqnumdivden | ⊢ ( 𝑄  ∈  ℚ  →  𝑄  =  ( ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) ) ) | 
						
							| 11 | 10 | negeqd | ⊢ ( 𝑄  ∈  ℚ  →  - 𝑄  =  - ( ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) ) ) | 
						
							| 12 | 2 | zcnd | ⊢ ( 𝑄  ∈  ℚ  →  ( numer ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 13 | 4 | nncnd | ⊢ ( 𝑄  ∈  ℚ  →  ( denom ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 14 | 4 | nnne0d | ⊢ ( 𝑄  ∈  ℚ  →  ( denom ‘ 𝑄 )  ≠  0 ) | 
						
							| 15 | 12 13 14 | divnegd | ⊢ ( 𝑄  ∈  ℚ  →  - ( ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) )  =  ( - ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) ) ) | 
						
							| 16 | 11 15 | eqtrd | ⊢ ( 𝑄  ∈  ℚ  →  - 𝑄  =  ( - ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) ) ) | 
						
							| 17 |  | qnumdenbi | ⊢ ( ( - 𝑄  ∈  ℚ  ∧  - ( numer ‘ 𝑄 )  ∈  ℤ  ∧  ( denom ‘ 𝑄 )  ∈  ℕ )  →  ( ( ( - ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) )  =  1  ∧  - 𝑄  =  ( - ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) ) )  ↔  ( ( numer ‘ - 𝑄 )  =  - ( numer ‘ 𝑄 )  ∧  ( denom ‘ - 𝑄 )  =  ( denom ‘ 𝑄 ) ) ) ) | 
						
							| 18 | 17 | biimpa | ⊢ ( ( ( - 𝑄  ∈  ℚ  ∧  - ( numer ‘ 𝑄 )  ∈  ℤ  ∧  ( denom ‘ 𝑄 )  ∈  ℕ )  ∧  ( ( - ( numer ‘ 𝑄 )  gcd  ( denom ‘ 𝑄 ) )  =  1  ∧  - 𝑄  =  ( - ( numer ‘ 𝑄 )  /  ( denom ‘ 𝑄 ) ) ) )  →  ( ( numer ‘ - 𝑄 )  =  - ( numer ‘ 𝑄 )  ∧  ( denom ‘ - 𝑄 )  =  ( denom ‘ 𝑄 ) ) ) | 
						
							| 19 | 1 3 4 9 16 18 | syl32anc | ⊢ ( 𝑄  ∈  ℚ  →  ( ( numer ‘ - 𝑄 )  =  - ( numer ‘ 𝑄 )  ∧  ( denom ‘ - 𝑄 )  =  ( denom ‘ 𝑄 ) ) ) |