| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 3 |
1 2
|
sselid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐴 ∈ ℚ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 5 |
1 4
|
sselid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐵 ∈ ℚ ) |
| 6 |
|
nnne0 |
⊢ ( - 𝐵 ∈ ℕ → - 𝐵 ≠ 0 ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - 𝐵 ≠ 0 ) |
| 8 |
|
neg0 |
⊢ - 0 = 0 |
| 9 |
8
|
neeq2i |
⊢ ( - 𝐵 ≠ - 0 ↔ - 𝐵 ≠ 0 ) |
| 10 |
7 9
|
sylibr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - 𝐵 ≠ - 0 ) |
| 11 |
10
|
neneqd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ¬ - 𝐵 = - 0 ) |
| 12 |
4
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 13 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 0 ∈ ℂ ) |
| 14 |
12 13
|
neg11ad |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( - 𝐵 = - 0 ↔ 𝐵 = 0 ) ) |
| 15 |
11 14
|
mtbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ¬ 𝐵 = 0 ) |
| 16 |
15
|
neqned |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
| 17 |
|
qdivcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| 18 |
3 5 16 17
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| 19 |
|
qnumcl |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℚ → ( numer ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ ) |
| 21 |
20
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 22 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 23 |
22
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 24 |
23
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 25 |
2 4
|
gcdcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 26 |
25
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 27 |
26
|
negcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 28 |
15
|
intnand |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 29 |
|
gcdeq0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 30 |
29
|
necon3abid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ≠ 0 ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 31 |
30
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ≠ 0 ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 32 |
28 31
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 33 |
26 32
|
negne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 34 |
24 27 33
|
divcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ) |
| 35 |
24 12 16
|
divneg2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐴 / 𝐵 ) = ( 𝐴 / - 𝐵 ) ) |
| 36 |
35
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ - ( 𝐴 / 𝐵 ) ) = ( numer ‘ ( 𝐴 / - 𝐵 ) ) ) |
| 37 |
|
numdenneg |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℚ → ( ( numer ‘ - ( 𝐴 / 𝐵 ) ) = - ( numer ‘ ( 𝐴 / 𝐵 ) ) ∧ ( denom ‘ - ( 𝐴 / 𝐵 ) ) = ( denom ‘ ( 𝐴 / 𝐵 ) ) ) ) |
| 38 |
37
|
simpld |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℚ → ( numer ‘ - ( 𝐴 / 𝐵 ) ) = - ( numer ‘ ( 𝐴 / 𝐵 ) ) ) |
| 39 |
18 38
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ - ( 𝐴 / 𝐵 ) ) = - ( numer ‘ ( 𝐴 / 𝐵 ) ) ) |
| 40 |
|
gcdneg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd - 𝐵 ) = ( 𝐴 gcd 𝐵 ) ) |
| 41 |
40
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 gcd - 𝐵 ) = ( 𝐴 gcd 𝐵 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd - 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
| 43 |
|
divnumden |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / - 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd - 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / - 𝐵 ) ) = ( - 𝐵 / ( 𝐴 gcd - 𝐵 ) ) ) ) |
| 44 |
43
|
simpld |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / - 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd - 𝐵 ) ) ) |
| 45 |
44
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / - 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd - 𝐵 ) ) ) |
| 46 |
24 27 33
|
divnegd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) = ( - 𝐴 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 47 |
24 26 32
|
div2negd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( - 𝐴 / - ( 𝐴 gcd 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
| 48 |
46 47
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
| 49 |
42 45 48
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / - 𝐵 ) ) = - ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 50 |
36 39 49
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( numer ‘ ( 𝐴 / 𝐵 ) ) = - ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 51 |
21 34 50
|
neg11d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 52 |
24 26 32
|
divneg2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( 𝐴 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 53 |
51 52
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( numer ‘ ( 𝐴 / 𝐵 ) ) = - ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
| 54 |
35
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ - ( 𝐴 / 𝐵 ) ) = ( denom ‘ ( 𝐴 / - 𝐵 ) ) ) |
| 55 |
37
|
simprd |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℚ → ( denom ‘ - ( 𝐴 / 𝐵 ) ) = ( denom ‘ ( 𝐴 / 𝐵 ) ) ) |
| 56 |
18 55
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ - ( 𝐴 / 𝐵 ) ) = ( denom ‘ ( 𝐴 / 𝐵 ) ) ) |
| 57 |
41
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( - 𝐵 / ( 𝐴 gcd - 𝐵 ) ) = ( - 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 58 |
43
|
simprd |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / - 𝐵 ) ) = ( - 𝐵 / ( 𝐴 gcd - 𝐵 ) ) ) |
| 59 |
58
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / - 𝐵 ) ) = ( - 𝐵 / ( 𝐴 gcd - 𝐵 ) ) ) |
| 60 |
12 26 32
|
divneg2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 𝐵 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 61 |
12 26 32
|
divnegd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → - ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( - 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 62 |
60 61
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( 𝐵 / - ( 𝐴 gcd 𝐵 ) ) = ( - 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 63 |
57 59 62
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / - 𝐵 ) ) = ( 𝐵 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 64 |
54 56 63
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / - ( 𝐴 gcd 𝐵 ) ) ) |
| 65 |
64 60
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) = - ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 66 |
53 65
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ - 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = - ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = - ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |