| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zssq | ⊢ ℤ  ⊆  ℚ | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 3 | 1 2 | sselid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐴  ∈  ℚ ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐵  ∈  ℤ ) | 
						
							| 5 | 1 4 | sselid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐵  ∈  ℚ ) | 
						
							| 6 |  | nnne0 | ⊢ ( - 𝐵  ∈  ℕ  →  - 𝐵  ≠  0 ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - 𝐵  ≠  0 ) | 
						
							| 8 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 9 | 8 | neeq2i | ⊢ ( - 𝐵  ≠  - 0  ↔  - 𝐵  ≠  0 ) | 
						
							| 10 | 7 9 | sylibr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - 𝐵  ≠  - 0 ) | 
						
							| 11 | 10 | neneqd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ¬  - 𝐵  =  - 0 ) | 
						
							| 12 | 4 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 13 |  | 0cnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  0  ∈  ℂ ) | 
						
							| 14 | 12 13 | neg11ad | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( - 𝐵  =  - 0  ↔  𝐵  =  0 ) ) | 
						
							| 15 | 11 14 | mtbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ¬  𝐵  =  0 ) | 
						
							| 16 | 15 | neqned | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐵  ≠  0 ) | 
						
							| 17 |  | qdivcl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐵  ∈  ℚ  ∧  𝐵  ≠  0 )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 18 | 3 5 16 17 | syl3anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 19 |  | qnumcl | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℚ  →  ( numer ‘ ( 𝐴  /  𝐵 ) )  ∈  ℤ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  𝐵 ) )  ∈  ℤ ) | 
						
							| 21 | 20 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 22 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 23 | 22 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 24 | 23 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 2 4 | gcdcld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ0 ) | 
						
							| 26 | 25 | nn0cnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℂ ) | 
						
							| 27 | 26 | negcld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐴  gcd  𝐵 )  ∈  ℂ ) | 
						
							| 28 | 15 | intnand | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 29 |  | gcdeq0 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  =  0  ↔  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 30 | 29 | necon3abid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ≠  0  ↔  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 31 | 30 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  ≠  0  ↔  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 32 | 28 31 | mpbird | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ≠  0 ) | 
						
							| 33 | 26 32 | negne0d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐴  gcd  𝐵 )  ≠  0 ) | 
						
							| 34 | 24 27 33 | divcld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) )  ∈  ℂ ) | 
						
							| 35 | 24 12 16 | divneg2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐴  /  𝐵 )  =  ( 𝐴  /  - 𝐵 ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ - ( 𝐴  /  𝐵 ) )  =  ( numer ‘ ( 𝐴  /  - 𝐵 ) ) ) | 
						
							| 37 |  | numdenneg | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℚ  →  ( ( numer ‘ - ( 𝐴  /  𝐵 ) )  =  - ( numer ‘ ( 𝐴  /  𝐵 ) )  ∧  ( denom ‘ - ( 𝐴  /  𝐵 ) )  =  ( denom ‘ ( 𝐴  /  𝐵 ) ) ) ) | 
						
							| 38 | 37 | simpld | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℚ  →  ( numer ‘ - ( 𝐴  /  𝐵 ) )  =  - ( numer ‘ ( 𝐴  /  𝐵 ) ) ) | 
						
							| 39 | 18 38 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ - ( 𝐴  /  𝐵 ) )  =  - ( numer ‘ ( 𝐴  /  𝐵 ) ) ) | 
						
							| 40 |  | gcdneg | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  - 𝐵 )  =  ( 𝐴  gcd  𝐵 ) ) | 
						
							| 41 | 40 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  gcd  - 𝐵 )  =  ( 𝐴  gcd  𝐵 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐴  /  ( 𝐴  gcd  - 𝐵 ) )  =  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 43 |  | divnumden | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( ( numer ‘ ( 𝐴  /  - 𝐵 ) )  =  ( 𝐴  /  ( 𝐴  gcd  - 𝐵 ) )  ∧  ( denom ‘ ( 𝐴  /  - 𝐵 ) )  =  ( - 𝐵  /  ( 𝐴  gcd  - 𝐵 ) ) ) ) | 
						
							| 44 | 43 | simpld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  - 𝐵 ) )  =  ( 𝐴  /  ( 𝐴  gcd  - 𝐵 ) ) ) | 
						
							| 45 | 44 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  - 𝐵 ) )  =  ( 𝐴  /  ( 𝐴  gcd  - 𝐵 ) ) ) | 
						
							| 46 | 24 27 33 | divnegd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) )  =  ( - 𝐴  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 47 | 24 26 32 | div2negd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( - 𝐴  /  - ( 𝐴  gcd  𝐵 ) )  =  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 48 | 46 47 | eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) )  =  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 49 | 42 45 48 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  - 𝐵 ) )  =  - ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 50 | 36 39 49 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( numer ‘ ( 𝐴  /  𝐵 ) )  =  - ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 51 | 21 34 50 | neg11d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 52 | 24 26 32 | divneg2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  =  ( 𝐴  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 53 | 51 52 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( numer ‘ ( 𝐴  /  𝐵 ) )  =  - ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 54 | 35 | fveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ - ( 𝐴  /  𝐵 ) )  =  ( denom ‘ ( 𝐴  /  - 𝐵 ) ) ) | 
						
							| 55 | 37 | simprd | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℚ  →  ( denom ‘ - ( 𝐴  /  𝐵 ) )  =  ( denom ‘ ( 𝐴  /  𝐵 ) ) ) | 
						
							| 56 | 18 55 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ - ( 𝐴  /  𝐵 ) )  =  ( denom ‘ ( 𝐴  /  𝐵 ) ) ) | 
						
							| 57 | 41 | oveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( - 𝐵  /  ( 𝐴  gcd  - 𝐵 ) )  =  ( - 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 58 | 43 | simprd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ ( 𝐴  /  - 𝐵 ) )  =  ( - 𝐵  /  ( 𝐴  gcd  - 𝐵 ) ) ) | 
						
							| 59 | 58 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ ( 𝐴  /  - 𝐵 ) )  =  ( - 𝐵  /  ( 𝐴  gcd  - 𝐵 ) ) ) | 
						
							| 60 | 12 26 32 | divneg2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  =  ( 𝐵  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 61 | 12 26 32 | divnegd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  - ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  =  ( - 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 62 | 60 61 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( 𝐵  /  - ( 𝐴  gcd  𝐵 ) )  =  ( - 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 63 | 57 59 62 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ ( 𝐴  /  - 𝐵 ) )  =  ( 𝐵  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 64 | 54 56 63 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐵  /  - ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 65 | 64 60 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( denom ‘ ( 𝐴  /  𝐵 ) )  =  - ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 66 | 53 65 | jca | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  - 𝐵  ∈  ℕ )  →  ( ( numer ‘ ( 𝐴  /  𝐵 ) )  =  - ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∧  ( denom ‘ ( 𝐴  /  𝐵 ) )  =  - ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) |