Metamath Proof Explorer


Theorem negne0d

Description: The negative of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
negne0d.2 ( 𝜑𝐴 ≠ 0 )
Assertion negne0d ( 𝜑 → - 𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 negne0d.2 ( 𝜑𝐴 ≠ 0 )
3 1 negne0bd ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) )
4 2 3 mpbid ( 𝜑 → - 𝐴 ≠ 0 )