Step |
Hyp |
Ref |
Expression |
1 |
|
zssq |
|- ZZ C_ QQ |
2 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> A e. ZZ ) |
3 |
1 2
|
sselid |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> A e. QQ ) |
4 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> B e. ZZ ) |
5 |
1 4
|
sselid |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> B e. QQ ) |
6 |
|
nnne0 |
|- ( -u B e. NN -> -u B =/= 0 ) |
7 |
6
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u B =/= 0 ) |
8 |
|
neg0 |
|- -u 0 = 0 |
9 |
8
|
neeq2i |
|- ( -u B =/= -u 0 <-> -u B =/= 0 ) |
10 |
7 9
|
sylibr |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u B =/= -u 0 ) |
11 |
10
|
neneqd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -. -u B = -u 0 ) |
12 |
4
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> B e. CC ) |
13 |
|
0cnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> 0 e. CC ) |
14 |
12 13
|
neg11ad |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( -u B = -u 0 <-> B = 0 ) ) |
15 |
11 14
|
mtbid |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -. B = 0 ) |
16 |
15
|
neqned |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> B =/= 0 ) |
17 |
|
qdivcl |
|- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ ) |
18 |
3 5 16 17
|
syl3anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A / B ) e. QQ ) |
19 |
|
qnumcl |
|- ( ( A / B ) e. QQ -> ( numer ` ( A / B ) ) e. ZZ ) |
20 |
18 19
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / B ) ) e. ZZ ) |
21 |
20
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / B ) ) e. CC ) |
22 |
|
simpl |
|- ( ( A e. ZZ /\ -u B e. NN ) -> A e. ZZ ) |
23 |
22
|
zcnd |
|- ( ( A e. ZZ /\ -u B e. NN ) -> A e. CC ) |
24 |
23
|
3adant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> A e. CC ) |
25 |
2 4
|
gcdcld |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A gcd B ) e. NN0 ) |
26 |
25
|
nn0cnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A gcd B ) e. CC ) |
27 |
26
|
negcld |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( A gcd B ) e. CC ) |
28 |
15
|
intnand |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -. ( A = 0 /\ B = 0 ) ) |
29 |
|
gcdeq0 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
30 |
29
|
necon3abid |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) =/= 0 <-> -. ( A = 0 /\ B = 0 ) ) ) |
31 |
30
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( ( A gcd B ) =/= 0 <-> -. ( A = 0 /\ B = 0 ) ) ) |
32 |
28 31
|
mpbird |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A gcd B ) =/= 0 ) |
33 |
26 32
|
negne0d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( A gcd B ) =/= 0 ) |
34 |
24 27 33
|
divcld |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A / -u ( A gcd B ) ) e. CC ) |
35 |
24 12 16
|
divneg2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( A / B ) = ( A / -u B ) ) |
36 |
35
|
fveq2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` -u ( A / B ) ) = ( numer ` ( A / -u B ) ) ) |
37 |
|
numdenneg |
|- ( ( A / B ) e. QQ -> ( ( numer ` -u ( A / B ) ) = -u ( numer ` ( A / B ) ) /\ ( denom ` -u ( A / B ) ) = ( denom ` ( A / B ) ) ) ) |
38 |
37
|
simpld |
|- ( ( A / B ) e. QQ -> ( numer ` -u ( A / B ) ) = -u ( numer ` ( A / B ) ) ) |
39 |
18 38
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` -u ( A / B ) ) = -u ( numer ` ( A / B ) ) ) |
40 |
|
gcdneg |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd -u B ) = ( A gcd B ) ) |
41 |
40
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A gcd -u B ) = ( A gcd B ) ) |
42 |
41
|
oveq2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( A / ( A gcd -u B ) ) = ( A / ( A gcd B ) ) ) |
43 |
|
divnumden |
|- ( ( A e. ZZ /\ -u B e. NN ) -> ( ( numer ` ( A / -u B ) ) = ( A / ( A gcd -u B ) ) /\ ( denom ` ( A / -u B ) ) = ( -u B / ( A gcd -u B ) ) ) ) |
44 |
43
|
simpld |
|- ( ( A e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / -u B ) ) = ( A / ( A gcd -u B ) ) ) |
45 |
44
|
3adant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / -u B ) ) = ( A / ( A gcd -u B ) ) ) |
46 |
24 27 33
|
divnegd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( A / -u ( A gcd B ) ) = ( -u A / -u ( A gcd B ) ) ) |
47 |
24 26 32
|
div2negd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( -u A / -u ( A gcd B ) ) = ( A / ( A gcd B ) ) ) |
48 |
46 47
|
eqtrd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( A / -u ( A gcd B ) ) = ( A / ( A gcd B ) ) ) |
49 |
42 45 48
|
3eqtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / -u B ) ) = -u ( A / -u ( A gcd B ) ) ) |
50 |
36 39 49
|
3eqtr3d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( numer ` ( A / B ) ) = -u ( A / -u ( A gcd B ) ) ) |
51 |
21 34 50
|
neg11d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / B ) ) = ( A / -u ( A gcd B ) ) ) |
52 |
24 26 32
|
divneg2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( A / ( A gcd B ) ) = ( A / -u ( A gcd B ) ) ) |
53 |
51 52
|
eqtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( numer ` ( A / B ) ) = -u ( A / ( A gcd B ) ) ) |
54 |
35
|
fveq2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( denom ` -u ( A / B ) ) = ( denom ` ( A / -u B ) ) ) |
55 |
37
|
simprd |
|- ( ( A / B ) e. QQ -> ( denom ` -u ( A / B ) ) = ( denom ` ( A / B ) ) ) |
56 |
18 55
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( denom ` -u ( A / B ) ) = ( denom ` ( A / B ) ) ) |
57 |
41
|
oveq2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( -u B / ( A gcd -u B ) ) = ( -u B / ( A gcd B ) ) ) |
58 |
43
|
simprd |
|- ( ( A e. ZZ /\ -u B e. NN ) -> ( denom ` ( A / -u B ) ) = ( -u B / ( A gcd -u B ) ) ) |
59 |
58
|
3adant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( denom ` ( A / -u B ) ) = ( -u B / ( A gcd -u B ) ) ) |
60 |
12 26 32
|
divneg2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( B / ( A gcd B ) ) = ( B / -u ( A gcd B ) ) ) |
61 |
12 26 32
|
divnegd |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> -u ( B / ( A gcd B ) ) = ( -u B / ( A gcd B ) ) ) |
62 |
60 61
|
eqtr3d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( B / -u ( A gcd B ) ) = ( -u B / ( A gcd B ) ) ) |
63 |
57 59 62
|
3eqtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( denom ` ( A / -u B ) ) = ( B / -u ( A gcd B ) ) ) |
64 |
54 56 63
|
3eqtr3d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( denom ` ( A / B ) ) = ( B / -u ( A gcd B ) ) ) |
65 |
64 60
|
eqtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( denom ` ( A / B ) ) = -u ( B / ( A gcd B ) ) ) |
66 |
53 65
|
jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ -u B e. NN ) -> ( ( numer ` ( A / B ) ) = -u ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = -u ( B / ( A gcd B ) ) ) ) |