| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frobrhm.1 |
|- B = ( Base ` R ) |
| 2 |
|
frobrhm.2 |
|- P = ( chr ` R ) |
| 3 |
|
frobrhm.3 |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 4 |
|
frobrhm.4 |
|- F = ( x e. B |-> ( P .^ x ) ) |
| 5 |
|
frobrhm.5 |
|- ( ph -> R e. CRing ) |
| 6 |
|
frobrhm.6 |
|- ( ph -> P e. Prime ) |
| 7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 9 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
| 10 |
|
simpr |
|- ( ( ph /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) ) |
| 11 |
10
|
oveq2d |
|- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( P .^ ( 1r ` R ) ) ) |
| 12 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 13 |
12
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 14 |
9 13
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 15 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 16 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
| 17 |
6 15 16
|
3syl |
|- ( ph -> P e. NN0 ) |
| 18 |
12 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 19 |
12 7
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 20 |
18 3 19
|
mulgnn0z |
|- ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
| 21 |
14 17 20
|
syl2anc |
|- ( ph -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
| 23 |
11 22
|
eqtrd |
|- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( 1r ` R ) ) |
| 24 |
1 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 25 |
9 24
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
| 26 |
4 23 25 25
|
fvmptd2 |
|- ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` R ) ) |
| 27 |
12
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 28 |
5 27
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( mulGrp ` R ) e. CMnd ) |
| 30 |
17
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. NN0 ) |
| 31 |
|
simprl |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> i e. B ) |
| 32 |
|
simprr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> j e. B ) |
| 33 |
12 8
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 34 |
18 3 33
|
mulgnn0di |
|- ( ( ( mulGrp ` R ) e. CMnd /\ ( P e. NN0 /\ i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
| 35 |
29 30 31 32 34
|
syl13anc |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
| 36 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> x = ( i ( .r ` R ) j ) ) |
| 37 |
36
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( .r ` R ) j ) ) ) |
| 38 |
9
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. Ring ) |
| 39 |
1 8
|
ringcl |
|- ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( .r ` R ) j ) e. B ) |
| 40 |
38 31 32 39
|
syl3anc |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( .r ` R ) j ) e. B ) |
| 41 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) e. _V ) |
| 42 |
4 37 40 41
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( P .^ ( i ( .r ` R ) j ) ) ) |
| 43 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> x = i ) |
| 44 |
43
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> ( P .^ x ) = ( P .^ i ) ) |
| 45 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ i ) e. _V ) |
| 46 |
4 44 31 45
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` i ) = ( P .^ i ) ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> x = j ) |
| 48 |
47
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> ( P .^ x ) = ( P .^ j ) ) |
| 49 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ j ) e. _V ) |
| 50 |
4 48 32 49
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` j ) = ( P .^ j ) ) |
| 51 |
46 50
|
oveq12d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( .r ` R ) ( F ` j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
| 52 |
35 42 51
|
3eqtr4d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( ( F ` i ) ( .r ` R ) ( F ` j ) ) ) |
| 53 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 54 |
14
|
adantr |
|- ( ( ph /\ x e. B ) -> ( mulGrp ` R ) e. Mnd ) |
| 55 |
17
|
adantr |
|- ( ( ph /\ x e. B ) -> P e. NN0 ) |
| 56 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 57 |
18 3 54 55 56
|
mulgnn0cld |
|- ( ( ph /\ x e. B ) -> ( P .^ x ) e. B ) |
| 58 |
57 4
|
fmptd |
|- ( ph -> F : B --> B ) |
| 59 |
5
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. CRing ) |
| 60 |
6
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. Prime ) |
| 61 |
1 53 3 2 59 60 31 32
|
freshmansdream |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) ) |
| 62 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> x = ( i ( +g ` R ) j ) ) |
| 63 |
62
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( +g ` R ) j ) ) ) |
| 64 |
1 53
|
ringacl |
|- ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( +g ` R ) j ) e. B ) |
| 65 |
38 31 32 64
|
syl3anc |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( +g ` R ) j ) e. B ) |
| 66 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) e. _V ) |
| 67 |
4 63 65 66
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( P .^ ( i ( +g ` R ) j ) ) ) |
| 68 |
46 50
|
oveq12d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( +g ` R ) ( F ` j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) ) |
| 69 |
61 67 68
|
3eqtr4d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( ( F ` i ) ( +g ` R ) ( F ` j ) ) ) |
| 70 |
1 7 7 8 8 9 9 26 52 1 53 53 58 69
|
isrhmd |
|- ( ph -> F e. ( R RingHom R ) ) |