Metamath Proof Explorer


Theorem frobrhm

Description: In a commutative ring with prime characteristic, the Frobenius function F is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024)

Ref Expression
Hypotheses frobrhm.1
|- B = ( Base ` R )
frobrhm.2
|- P = ( chr ` R )
frobrhm.3
|- .^ = ( .g ` ( mulGrp ` R ) )
frobrhm.4
|- F = ( x e. B |-> ( P .^ x ) )
frobrhm.5
|- ( ph -> R e. CRing )
frobrhm.6
|- ( ph -> P e. Prime )
Assertion frobrhm
|- ( ph -> F e. ( R RingHom R ) )

Proof

Step Hyp Ref Expression
1 frobrhm.1
 |-  B = ( Base ` R )
2 frobrhm.2
 |-  P = ( chr ` R )
3 frobrhm.3
 |-  .^ = ( .g ` ( mulGrp ` R ) )
4 frobrhm.4
 |-  F = ( x e. B |-> ( P .^ x ) )
5 frobrhm.5
 |-  ( ph -> R e. CRing )
6 frobrhm.6
 |-  ( ph -> P e. Prime )
7 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
8 eqid
 |-  ( .r ` R ) = ( .r ` R )
9 5 crngringd
 |-  ( ph -> R e. Ring )
10 simpr
 |-  ( ( ph /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) )
11 10 oveq2d
 |-  ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( P .^ ( 1r ` R ) ) )
12 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
13 12 ringmgp
 |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd )
14 9 13 syl
 |-  ( ph -> ( mulGrp ` R ) e. Mnd )
15 prmnn
 |-  ( P e. Prime -> P e. NN )
16 nnnn0
 |-  ( P e. NN -> P e. NN0 )
17 6 15 16 3syl
 |-  ( ph -> P e. NN0 )
18 12 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
19 12 7 ringidval
 |-  ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) )
20 18 3 19 mulgnn0z
 |-  ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) )
21 14 17 20 syl2anc
 |-  ( ph -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) )
22 21 adantr
 |-  ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) )
23 11 22 eqtrd
 |-  ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( 1r ` R ) )
24 1 7 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. B )
25 9 24 syl
 |-  ( ph -> ( 1r ` R ) e. B )
26 4 23 25 25 fvmptd2
 |-  ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` R ) )
27 12 crngmgp
 |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd )
28 5 27 syl
 |-  ( ph -> ( mulGrp ` R ) e. CMnd )
29 28 adantr
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( mulGrp ` R ) e. CMnd )
30 17 adantr
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. NN0 )
31 simprl
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> i e. B )
32 simprr
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> j e. B )
33 12 8 mgpplusg
 |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) )
34 18 3 33 mulgnn0di
 |-  ( ( ( mulGrp ` R ) e. CMnd /\ ( P e. NN0 /\ i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) )
35 29 30 31 32 34 syl13anc
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) )
36 simpr
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> x = ( i ( .r ` R ) j ) )
37 36 oveq2d
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( .r ` R ) j ) ) )
38 9 adantr
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. Ring )
39 1 8 ringcl
 |-  ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( .r ` R ) j ) e. B )
40 38 31 32 39 syl3anc
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( .r ` R ) j ) e. B )
41 ovexd
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) e. _V )
42 4 37 40 41 fvmptd2
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( P .^ ( i ( .r ` R ) j ) ) )
43 simpr
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> x = i )
44 43 oveq2d
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> ( P .^ x ) = ( P .^ i ) )
45 ovexd
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ i ) e. _V )
46 4 44 31 45 fvmptd2
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` i ) = ( P .^ i ) )
47 simpr
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> x = j )
48 47 oveq2d
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> ( P .^ x ) = ( P .^ j ) )
49 ovexd
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ j ) e. _V )
50 4 48 32 49 fvmptd2
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` j ) = ( P .^ j ) )
51 46 50 oveq12d
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( .r ` R ) ( F ` j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) )
52 35 42 51 3eqtr4d
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( ( F ` i ) ( .r ` R ) ( F ` j ) ) )
53 eqid
 |-  ( +g ` R ) = ( +g ` R )
54 14 adantr
 |-  ( ( ph /\ x e. B ) -> ( mulGrp ` R ) e. Mnd )
55 17 adantr
 |-  ( ( ph /\ x e. B ) -> P e. NN0 )
56 simpr
 |-  ( ( ph /\ x e. B ) -> x e. B )
57 18 3 mulgnn0cl
 |-  ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 /\ x e. B ) -> ( P .^ x ) e. B )
58 54 55 56 57 syl3anc
 |-  ( ( ph /\ x e. B ) -> ( P .^ x ) e. B )
59 58 4 fmptd
 |-  ( ph -> F : B --> B )
60 5 adantr
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. CRing )
61 6 adantr
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. Prime )
62 1 53 3 2 60 61 31 32 freshmansdream
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) )
63 simpr
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> x = ( i ( +g ` R ) j ) )
64 63 oveq2d
 |-  ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( +g ` R ) j ) ) )
65 1 53 ringacl
 |-  ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( +g ` R ) j ) e. B )
66 38 31 32 65 syl3anc
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( +g ` R ) j ) e. B )
67 ovexd
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) e. _V )
68 4 64 66 67 fvmptd2
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( P .^ ( i ( +g ` R ) j ) ) )
69 46 50 oveq12d
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( +g ` R ) ( F ` j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) )
70 62 68 69 3eqtr4d
 |-  ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( ( F ` i ) ( +g ` R ) ( F ` j ) ) )
71 1 7 7 8 8 9 9 26 52 1 53 53 59 70 isrhmd
 |-  ( ph -> F e. ( R RingHom R ) )