Step |
Hyp |
Ref |
Expression |
1 |
|
frobrhm.1 |
|- B = ( Base ` R ) |
2 |
|
frobrhm.2 |
|- P = ( chr ` R ) |
3 |
|
frobrhm.3 |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
4 |
|
frobrhm.4 |
|- F = ( x e. B |-> ( P .^ x ) ) |
5 |
|
frobrhm.5 |
|- ( ph -> R e. CRing ) |
6 |
|
frobrhm.6 |
|- ( ph -> P e. Prime ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
10 |
|
simpr |
|- ( ( ph /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) ) |
11 |
10
|
oveq2d |
|- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( P .^ ( 1r ` R ) ) ) |
12 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
13 |
12
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
14 |
9 13
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
15 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
16 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
17 |
6 15 16
|
3syl |
|- ( ph -> P e. NN0 ) |
18 |
12 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
19 |
12 7
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
20 |
18 3 19
|
mulgnn0z |
|- ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
21 |
14 17 20
|
syl2anc |
|- ( ph -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
23 |
11 22
|
eqtrd |
|- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( 1r ` R ) ) |
24 |
1 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
25 |
9 24
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
26 |
4 23 25 25
|
fvmptd2 |
|- ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` R ) ) |
27 |
12
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
28 |
5 27
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
29 |
28
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( mulGrp ` R ) e. CMnd ) |
30 |
17
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. NN0 ) |
31 |
|
simprl |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> i e. B ) |
32 |
|
simprr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> j e. B ) |
33 |
12 8
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
34 |
18 3 33
|
mulgnn0di |
|- ( ( ( mulGrp ` R ) e. CMnd /\ ( P e. NN0 /\ i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
35 |
29 30 31 32 34
|
syl13anc |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
36 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> x = ( i ( .r ` R ) j ) ) |
37 |
36
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( .r ` R ) j ) ) ) |
38 |
9
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. Ring ) |
39 |
1 8
|
ringcl |
|- ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( .r ` R ) j ) e. B ) |
40 |
38 31 32 39
|
syl3anc |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( .r ` R ) j ) e. B ) |
41 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) e. _V ) |
42 |
4 37 40 41
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( P .^ ( i ( .r ` R ) j ) ) ) |
43 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> x = i ) |
44 |
43
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> ( P .^ x ) = ( P .^ i ) ) |
45 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ i ) e. _V ) |
46 |
4 44 31 45
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` i ) = ( P .^ i ) ) |
47 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> x = j ) |
48 |
47
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> ( P .^ x ) = ( P .^ j ) ) |
49 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ j ) e. _V ) |
50 |
4 48 32 49
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` j ) = ( P .^ j ) ) |
51 |
46 50
|
oveq12d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( .r ` R ) ( F ` j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
52 |
35 42 51
|
3eqtr4d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( ( F ` i ) ( .r ` R ) ( F ` j ) ) ) |
53 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
54 |
14
|
adantr |
|- ( ( ph /\ x e. B ) -> ( mulGrp ` R ) e. Mnd ) |
55 |
17
|
adantr |
|- ( ( ph /\ x e. B ) -> P e. NN0 ) |
56 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
57 |
18 3
|
mulgnn0cl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 /\ x e. B ) -> ( P .^ x ) e. B ) |
58 |
54 55 56 57
|
syl3anc |
|- ( ( ph /\ x e. B ) -> ( P .^ x ) e. B ) |
59 |
58 4
|
fmptd |
|- ( ph -> F : B --> B ) |
60 |
5
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. CRing ) |
61 |
6
|
adantr |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. Prime ) |
62 |
1 53 3 2 60 61 31 32
|
freshmansdream |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) ) |
63 |
|
simpr |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> x = ( i ( +g ` R ) j ) ) |
64 |
63
|
oveq2d |
|- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( +g ` R ) j ) ) ) |
65 |
1 53
|
ringacl |
|- ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( +g ` R ) j ) e. B ) |
66 |
38 31 32 65
|
syl3anc |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( +g ` R ) j ) e. B ) |
67 |
|
ovexd |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) e. _V ) |
68 |
4 64 66 67
|
fvmptd2 |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( P .^ ( i ( +g ` R ) j ) ) ) |
69 |
46 50
|
oveq12d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( +g ` R ) ( F ` j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) ) |
70 |
62 68 69
|
3eqtr4d |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( ( F ` i ) ( +g ` R ) ( F ` j ) ) ) |
71 |
1 7 7 8 8 9 9 26 52 1 53 53 59 70
|
isrhmd |
|- ( ph -> F e. ( R RingHom R ) ) |