Metamath Proof Explorer


Theorem ply1chr

Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypothesis ply1chr.1
|- P = ( Poly1 ` R )
Assertion ply1chr
|- ( R e. CRing -> ( chr ` P ) = ( chr ` R ) )

Proof

Step Hyp Ref Expression
1 ply1chr.1
 |-  P = ( Poly1 ` R )
2 eqid
 |-  ( od ` P ) = ( od ` P )
3 eqid
 |-  ( 1r ` P ) = ( 1r ` P )
4 eqid
 |-  ( chr ` P ) = ( chr ` P )
5 2 3 4 chrval
 |-  ( ( od ` P ) ` ( 1r ` P ) ) = ( chr ` P )
6 eqid
 |-  ( od ` R ) = ( od ` R )
7 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
8 eqid
 |-  ( chr ` R ) = ( chr ` R )
9 6 7 8 chrval
 |-  ( ( od ` R ) ` ( 1r ` R ) ) = ( chr ` R )
10 9 eqcomi
 |-  ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) )
11 id
 |-  ( R e. CRing -> R e. CRing )
12 11 crnggrpd
 |-  ( R e. CRing -> R e. Grp )
13 crngring
 |-  ( R e. CRing -> R e. Ring )
14 eqid
 |-  ( Base ` R ) = ( Base ` R )
15 14 7 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) )
16 13 15 syl
 |-  ( R e. CRing -> ( 1r ` R ) e. ( Base ` R ) )
17 8 chrcl
 |-  ( R e. Ring -> ( chr ` R ) e. NN0 )
18 13 17 syl
 |-  ( R e. CRing -> ( chr ` R ) e. NN0 )
19 eqid
 |-  ( .g ` R ) = ( .g ` R )
20 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
21 14 6 19 20 odeq
 |-  ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ ( chr ` R ) e. NN0 ) -> ( ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) )
22 12 16 18 21 syl3anc
 |-  ( R e. CRing -> ( ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) )
23 10 22 mpbii
 |-  ( R e. CRing -> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) )
24 23 r19.21bi
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) )
25 eqid
 |-  ( algSc ` P ) = ( algSc ` P )
26 13 adantr
 |-  ( ( R e. CRing /\ n e. NN0 ) -> R e. Ring )
27 12 grpmndd
 |-  ( R e. CRing -> R e. Mnd )
28 27 adantr
 |-  ( ( R e. CRing /\ n e. NN0 ) -> R e. Mnd )
29 simpr
 |-  ( ( R e. CRing /\ n e. NN0 ) -> n e. NN0 )
30 16 adantr
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) )
31 14 19 28 29 30 mulgnn0cld
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( n ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) )
32 simpl
 |-  ( ( R e. CRing /\ n e. NN0 ) -> R e. CRing )
33 14 20 ring0cl
 |-  ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) )
34 32 13 33 3syl
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( 0g ` R ) e. ( Base ` R ) )
35 1 14 25 26 31 34 ply1scleq
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) )
36 1 ply1sca
 |-  ( R e. CRing -> R = ( Scalar ` P ) )
37 36 adantr
 |-  ( ( R e. CRing /\ n e. NN0 ) -> R = ( Scalar ` P ) )
38 37 fveq2d
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( .g ` R ) = ( .g ` ( Scalar ` P ) ) )
39 38 oveqd
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( n ( .g ` R ) ( 1r ` R ) ) = ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) )
40 39 fveq2d
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) )
41 1 ply1assa
 |-  ( R e. CRing -> P e. AssAlg )
42 41 adantr
 |-  ( ( R e. CRing /\ n e. NN0 ) -> P e. AssAlg )
43 37 fveq2d
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) )
44 30 43 eleqtrd
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( 1r ` R ) e. ( Base ` ( Scalar ` P ) ) )
45 eqid
 |-  ( Scalar ` P ) = ( Scalar ` P )
46 eqid
 |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) )
47 eqid
 |-  ( .g ` P ) = ( .g ` P )
48 eqid
 |-  ( .g ` ( Scalar ` P ) ) = ( .g ` ( Scalar ` P ) )
49 25 45 46 47 48 asclmulg
 |-  ( ( P e. AssAlg /\ n e. NN0 /\ ( 1r ` R ) e. ( Base ` ( Scalar ` P ) ) ) -> ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) )
50 42 29 44 49 syl3anc
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) )
51 40 50 eqtrd
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) )
52 eqid
 |-  ( 0g ` P ) = ( 0g ` P )
53 1 25 20 52 ply1scl0
 |-  ( R e. Ring -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) )
54 32 13 53 3syl
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) )
55 51 54 eqeq12d
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) )
56 24 35 55 3bitr2d
 |-  ( ( R e. CRing /\ n e. NN0 ) -> ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) )
57 56 ralrimiva
 |-  ( R e. CRing -> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) )
58 1 ply1crng
 |-  ( R e. CRing -> P e. CRing )
59 58 crnggrpd
 |-  ( R e. CRing -> P e. Grp )
60 eqid
 |-  ( Base ` P ) = ( Base ` P )
61 1 25 14 60 ply1sclcl
 |-  ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) )
62 13 16 61 syl2anc
 |-  ( R e. CRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) )
63 60 2 47 52 odeq
 |-  ( ( P e. Grp /\ ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) /\ ( chr ` R ) e. NN0 ) -> ( ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) )
64 59 62 18 63 syl3anc
 |-  ( R e. CRing -> ( ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) )
65 57 64 mpbird
 |-  ( R e. CRing -> ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) )
66 1 25 7 3 ply1scl1
 |-  ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) )
67 66 fveq2d
 |-  ( R e. Ring -> ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( ( od ` P ) ` ( 1r ` P ) ) )
68 13 67 syl
 |-  ( R e. CRing -> ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( ( od ` P ) ` ( 1r ` P ) ) )
69 65 68 eqtr2d
 |-  ( R e. CRing -> ( ( od ` P ) ` ( 1r ` P ) ) = ( chr ` R ) )
70 5 69 eqtr3id
 |-  ( R e. CRing -> ( chr ` P ) = ( chr ` R ) )