Step |
Hyp |
Ref |
Expression |
1 |
|
ply1chr.1 |
|- P = ( Poly1 ` R ) |
2 |
|
eqid |
|- ( od ` P ) = ( od ` P ) |
3 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
4 |
|
eqid |
|- ( chr ` P ) = ( chr ` P ) |
5 |
2 3 4
|
chrval |
|- ( ( od ` P ) ` ( 1r ` P ) ) = ( chr ` P ) |
6 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
9 |
6 7 8
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = ( chr ` R ) |
10 |
9
|
eqcomi |
|- ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) |
11 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
12 |
11
|
crnggrpd |
|- ( R e. CRing -> R e. Grp ) |
13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
15 |
14 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
16 |
13 15
|
syl |
|- ( R e. CRing -> ( 1r ` R ) e. ( Base ` R ) ) |
17 |
8
|
chrcl |
|- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
18 |
13 17
|
syl |
|- ( R e. CRing -> ( chr ` R ) e. NN0 ) |
19 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
20 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
21 |
14 6 19 20
|
odeq |
|- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ ( chr ` R ) e. NN0 ) -> ( ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) ) |
22 |
12 16 18 21
|
syl3anc |
|- ( R e. CRing -> ( ( chr ` R ) = ( ( od ` R ) ` ( 1r ` R ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) ) |
23 |
10 22
|
mpbii |
|- ( R e. CRing -> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) |
24 |
23
|
r19.21bi |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( chr ` R ) || n <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) |
25 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
26 |
13
|
adantr |
|- ( ( R e. CRing /\ n e. NN0 ) -> R e. Ring ) |
27 |
12
|
grpmndd |
|- ( R e. CRing -> R e. Mnd ) |
28 |
27
|
adantr |
|- ( ( R e. CRing /\ n e. NN0 ) -> R e. Mnd ) |
29 |
|
simpr |
|- ( ( R e. CRing /\ n e. NN0 ) -> n e. NN0 ) |
30 |
16
|
adantr |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) ) |
31 |
14 19
|
mulgnn0cl |
|- ( ( R e. Mnd /\ n e. NN0 /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( n ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
32 |
28 29 30 31
|
syl3anc |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( n ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
33 |
|
simpl |
|- ( ( R e. CRing /\ n e. NN0 ) -> R e. CRing ) |
34 |
14 20
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
35 |
33 13 34
|
3syl |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( 0g ` R ) e. ( Base ` R ) ) |
36 |
1 14 25 26 32 35
|
ply1scleq |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) <-> ( n ( .g ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) ) |
37 |
1
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` P ) ) |
38 |
37
|
adantr |
|- ( ( R e. CRing /\ n e. NN0 ) -> R = ( Scalar ` P ) ) |
39 |
38
|
fveq2d |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( .g ` R ) = ( .g ` ( Scalar ` P ) ) ) |
40 |
39
|
oveqd |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( n ( .g ` R ) ( 1r ` R ) ) = ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) |
41 |
40
|
fveq2d |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) ) |
42 |
1
|
ply1assa |
|- ( R e. CRing -> P e. AssAlg ) |
43 |
42
|
adantr |
|- ( ( R e. CRing /\ n e. NN0 ) -> P e. AssAlg ) |
44 |
38
|
fveq2d |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
45 |
30 44
|
eleqtrd |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( 1r ` R ) e. ( Base ` ( Scalar ` P ) ) ) |
46 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
47 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
48 |
|
eqid |
|- ( .g ` P ) = ( .g ` P ) |
49 |
|
eqid |
|- ( .g ` ( Scalar ` P ) ) = ( .g ` ( Scalar ` P ) ) |
50 |
25 46 47 48 49
|
asclmulg |
|- ( ( P e. AssAlg /\ n e. NN0 /\ ( 1r ` R ) e. ( Base ` ( Scalar ` P ) ) ) -> ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
51 |
43 29 45 50
|
syl3anc |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` ( Scalar ` P ) ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
52 |
41 51
|
eqtrd |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
53 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
54 |
1 25 20 53
|
ply1scl0 |
|- ( R e. Ring -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
55 |
33 13 54
|
3syl |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
56 |
52 55
|
eqeq12d |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( ( algSc ` P ) ` ( n ( .g ` R ) ( 1r ` R ) ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) |
57 |
24 36 56
|
3bitr2d |
|- ( ( R e. CRing /\ n e. NN0 ) -> ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) |
58 |
57
|
ralrimiva |
|- ( R e. CRing -> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) |
59 |
1
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
60 |
59
|
crnggrpd |
|- ( R e. CRing -> P e. Grp ) |
61 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
62 |
1 25 14 61
|
ply1sclcl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) ) |
63 |
13 16 62
|
syl2anc |
|- ( R e. CRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) ) |
64 |
61 2 48 53
|
odeq |
|- ( ( P e. Grp /\ ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) /\ ( chr ` R ) e. NN0 ) -> ( ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) ) |
65 |
60 63 18 64
|
syl3anc |
|- ( R e. CRing -> ( ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) <-> A. n e. NN0 ( ( chr ` R ) || n <-> ( n ( .g ` P ) ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( 0g ` P ) ) ) ) |
66 |
58 65
|
mpbird |
|- ( R e. CRing -> ( chr ` R ) = ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
67 |
1 25 7 3
|
ply1scl1 |
|- ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
68 |
67
|
fveq2d |
|- ( R e. Ring -> ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( ( od ` P ) ` ( 1r ` P ) ) ) |
69 |
13 68
|
syl |
|- ( R e. CRing -> ( ( od ` P ) ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( ( od ` P ) ` ( 1r ` P ) ) ) |
70 |
66 69
|
eqtr2d |
|- ( R e. CRing -> ( ( od ` P ) ` ( 1r ` P ) ) = ( chr ` R ) ) |
71 |
5 70
|
eqtr3id |
|- ( R e. CRing -> ( chr ` P ) = ( chr ` R ) ) |