| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1scleq.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1scleq.b |
|- B = ( Base ` R ) |
| 3 |
|
ply1scleq.a |
|- A = ( algSc ` P ) |
| 4 |
|
ply1scleq.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
ply1scleq.e |
|- ( ph -> E e. B ) |
| 6 |
|
ply1scleq.f |
|- ( ph -> F e. B ) |
| 7 |
|
fveq2 |
|- ( d = 0 -> ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 8 |
|
fveq2 |
|- ( d = 0 -> ( ( coe1 ` ( A ` F ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( d = 0 -> ( ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) <-> ( ( coe1 ` ( A ` E ) ) ` 0 ) = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) |
| 10 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 11 |
1 3 2 10
|
ply1sclcl |
|- ( ( R e. Ring /\ E e. B ) -> ( A ` E ) e. ( Base ` P ) ) |
| 12 |
4 5 11
|
syl2anc |
|- ( ph -> ( A ` E ) e. ( Base ` P ) ) |
| 13 |
1 3 2 10
|
ply1sclcl |
|- ( ( R e. Ring /\ F e. B ) -> ( A ` F ) e. ( Base ` P ) ) |
| 14 |
4 6 13
|
syl2anc |
|- ( ph -> ( A ` F ) e. ( Base ` P ) ) |
| 15 |
|
eqid |
|- ( coe1 ` ( A ` E ) ) = ( coe1 ` ( A ` E ) ) |
| 16 |
|
eqid |
|- ( coe1 ` ( A ` F ) ) = ( coe1 ` ( A ` F ) ) |
| 17 |
1 10 15 16
|
ply1coe1eq |
|- ( ( R e. Ring /\ ( A ` E ) e. ( Base ` P ) /\ ( A ` F ) e. ( Base ` P ) ) -> ( A. d e. NN0 ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) <-> ( A ` E ) = ( A ` F ) ) ) |
| 18 |
4 12 14 17
|
syl3anc |
|- ( ph -> ( A. d e. NN0 ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) <-> ( A ` E ) = ( A ` F ) ) ) |
| 19 |
18
|
biimpar |
|- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> A. d e. NN0 ( ( coe1 ` ( A ` E ) ) ` d ) = ( ( coe1 ` ( A ` F ) ) ` d ) ) |
| 20 |
|
0nn0 |
|- 0 e. NN0 |
| 21 |
20
|
a1i |
|- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> 0 e. NN0 ) |
| 22 |
9 19 21
|
rspcdva |
|- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> ( ( coe1 ` ( A ` E ) ) ` 0 ) = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 23 |
1 3 2
|
ply1sclid |
|- ( ( R e. Ring /\ E e. B ) -> E = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 24 |
4 5 23
|
syl2anc |
|- ( ph -> E = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> E = ( ( coe1 ` ( A ` E ) ) ` 0 ) ) |
| 26 |
1 3 2
|
ply1sclid |
|- ( ( R e. Ring /\ F e. B ) -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 27 |
4 6 26
|
syl2anc |
|- ( ph -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 29 |
22 25 28
|
3eqtr4d |
|- ( ( ph /\ ( A ` E ) = ( A ` F ) ) -> E = F ) |
| 30 |
|
fveq2 |
|- ( E = F -> ( A ` E ) = ( A ` F ) ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ E = F ) -> ( A ` E ) = ( A ` F ) ) |
| 32 |
29 31
|
impbida |
|- ( ph -> ( ( A ` E ) = ( A ` F ) <-> E = F ) ) |