Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fn.o |
|- O = ( R evalSub1 S ) |
2 |
|
evls1fn.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
3 |
|
evls1fn.u |
|- U = ( Base ` P ) |
4 |
|
evls1fn.1 |
|- ( ph -> R e. CRing ) |
5 |
|
evls1fn.2 |
|- ( ph -> S e. ( SubRing ` R ) ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- ( R ^s ( Base ` R ) ) = ( R ^s ( Base ` R ) ) |
8 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
9 |
1 6 7 8 2
|
evls1rhm |
|- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> O e. ( P RingHom ( R ^s ( Base ` R ) ) ) ) |
10 |
4 5 9
|
syl2anc |
|- ( ph -> O e. ( P RingHom ( R ^s ( Base ` R ) ) ) ) |
11 |
|
eqid |
|- ( Base ` ( R ^s ( Base ` R ) ) ) = ( Base ` ( R ^s ( Base ` R ) ) ) |
12 |
3 11
|
rhmf |
|- ( O e. ( P RingHom ( R ^s ( Base ` R ) ) ) -> O : U --> ( Base ` ( R ^s ( Base ` R ) ) ) ) |
13 |
10 12
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s ( Base ` R ) ) ) ) |
14 |
13
|
ffnd |
|- ( ph -> O Fn U ) |