Metamath Proof Explorer


Theorem evls1fn

Description: Functionality of the subring polynomial evaluation. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses evls1fn.o O=RevalSub1S
evls1fn.p P=Poly1R𝑠S
evls1fn.u U=BaseP
evls1fn.1 φRCRing
evls1fn.2 φSSubRingR
Assertion evls1fn φOFnU

Proof

Step Hyp Ref Expression
1 evls1fn.o O=RevalSub1S
2 evls1fn.p P=Poly1R𝑠S
3 evls1fn.u U=BaseP
4 evls1fn.1 φRCRing
5 evls1fn.2 φSSubRingR
6 eqid BaseR=BaseR
7 eqid R𝑠BaseR=R𝑠BaseR
8 eqid R𝑠S=R𝑠S
9 1 6 7 8 2 evls1rhm RCRingSSubRingROPRingHomR𝑠BaseR
10 4 5 9 syl2anc φOPRingHomR𝑠BaseR
11 eqid BaseR𝑠BaseR=BaseR𝑠BaseR
12 3 11 rhmf OPRingHomR𝑠BaseRO:UBaseR𝑠BaseR
13 10 12 syl φO:UBaseR𝑠BaseR
14 13 ffnd φOFnU