Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scleq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1scleq.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
ply1scleq.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
4 |
|
ply1scleq.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ply1scleq.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
6 |
|
ply1scleq.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
fveq2 |
⊢ ( 𝑑 = 0 → ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 𝑑 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 0 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑑 = 0 → ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 𝑑 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑑 = 0 → ( ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 𝑑 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
11 |
1 3 2 10
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝐵 ) → ( 𝐴 ‘ 𝐸 ) ∈ ( Base ‘ 𝑃 ) ) |
12 |
4 5 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐸 ) ∈ ( Base ‘ 𝑃 ) ) |
13 |
1 3 2 10
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
14 |
4 6 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
15 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) = ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) |
16 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) = ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) |
17 |
1 10 15 16
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ‘ 𝐸 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑑 ∈ ℕ0 ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 𝑑 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) ) |
18 |
4 12 14 17
|
syl3anc |
⊢ ( 𝜑 → ( ∀ 𝑑 ∈ ℕ0 ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 𝑑 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 𝑑 ) ↔ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) → ∀ 𝑑 ∈ ℕ0 ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 𝑑 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 𝑑 ) ) |
20 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) → 0 ∈ ℕ0 ) |
22 |
9 19 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) → ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) |
23 |
1 3 2
|
ply1sclid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝐵 ) → 𝐸 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 0 ) ) |
24 |
4 5 23
|
syl2anc |
⊢ ( 𝜑 → 𝐸 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 0 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) → 𝐸 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐸 ) ) ‘ 0 ) ) |
26 |
1 3 2
|
ply1sclid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → 𝐹 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) |
27 |
4 6 26
|
syl2anc |
⊢ ( 𝜑 → 𝐹 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) → 𝐹 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) |
29 |
22 25 28
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) → 𝐸 = 𝐹 ) |
30 |
|
fveq2 |
⊢ ( 𝐸 = 𝐹 → ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ) |
32 |
29 31
|
impbida |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐸 ) = ( 𝐴 ‘ 𝐹 ) ↔ 𝐸 = 𝐹 ) ) |